Skip to main content
Log in

Lanceolanone A, a new biflavanone, and a chalcone glucoside from the flower heads of Coreopsis lanceolata and their aldose reductase inhibitory activity and AMPK activation

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The MeOH extract of the flower heads of Coreopsis lanceolata L. (Asteraceae) exhibited aldose reductase (AR) inhibitory activity (IC50 8.36 µg/mL). Bioassay-guided fractionation of the extract resulted in the isolation of a new biflavanone-named Lanceolanone A (1) and a chalcone glucoside (6), along with 12 known compounds (25 and 714), of which 4, 7, 9, 10, and 12 were isolated from C. lanceolata for the first time. The structures of the new compounds (1 and 6) were determined by extensive spectroscopic analysis, including two-dimensional (2D) NMR, and ECD calculation method. Compounds 2, 4, 11, 13, and 14 exhibited AR inhibitory activities with IC50 values between 2.40 and 9.99 µM. Furthermore, 813 at 1.0 mM activated AMPK expression in HepG2 human hepatoma cells compared to the control.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mahapatra DK, Asati V, Bharti SK (2015) Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem 92:839–865

    Article  CAS  Google Scholar 

  2. Ramirez MA, Borja NL (2008) Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy: J Human Pharmacol Drug Therapy 28: 646–655

  3. Kuroda M, Ohshima T, Kan C, Mimaki Y (2016) Chemical constituents of the leaves of Tussilago farfara and their aldose reductase inhibitory activity. Nat Prod Comm 11:1661–1664

    Google Scholar 

  4. Iguchi T, Kuroda M, Akiyama N, Hashimoto M, Mimaki Y (2022) Chemical constituents and aldose reductase inhibitory activities of Betula alba bark and leaves. Nat Prod Res 36:1004–1008

    Article  CAS  Google Scholar 

  5. Iguchi T, Kuroda M, Narita K, Mimaki Y (2019) Chemical constituents from the aerial parts of Achillea millefolium and their aldose reductase inhibitory activity. Shoyakugaku Zasshi 73:91–92

    Google Scholar 

  6. Iguchi T, Kuroda M, Kan C, Fujii T, Mimaki Y (2020) Chemical constituents in the whole-plant extract of Agrimonia eupatoria and their aldose reductase inhibitory activities. Shoyakugaku Zasshi 74:60–61

    Google Scholar 

  7. McGaw LJ, Omokhua-Uyi AG, Finnie JF, Van Staden J (2022) Invasive alien plants and weeds in South Africa: a review of their applications in traditional medicine and potential pharmaceutical properties. J Ethnopharmacol 283:114564

    Article  CAS  Google Scholar 

  8. Shang YF, Oidovsambuu S, Jeon JS, Nho CW, Um BH (2013) Chalcones from the flowers of Coreopsis lanceolata and their in vitro antioxidative activity. Planta Med 79:295–300

    Article  CAS  Google Scholar 

  9. Kim BR, Paudel SB, Nam JW, Jin CH, Lee IS, Han AR (2020) Constituents of Coreopsis lanceolata flower and their dipeptidyl peptidase IV inhibitory effects. Molecules 25:4370

    Article  CAS  Google Scholar 

  10. Fang JB, Jia W, Gao WY, Yao Z, Teng J, Zhao AH, Duan HQ (2007) Antitumor constituents from Alternanthera philoxeroides. J Asian Nat Prod Res 9:511–515

    Article  CAS  Google Scholar 

  11. Mondino A, Yaneselli K, Ingold A, Echeverry C, Raffaelli S, Vázquez Á, García y Santos C (2022) Cytotoxic effect of Senecio madagascariensis (Asteraceae) extracts on cancer derived cell lines. Agrociencia Uruguay 26:e425

    Article  Google Scholar 

  12. Viollet B, Lantier L, Devin-Leclerc J, Hébrard S, Amouyal C, Mounier R, Andreelli F (2009) Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci (Landmark Ed) 14:3380–3400

    Article  CAS  Google Scholar 

  13. Pardede A, Mashita K, Ninomiya M, Tanaka K, Koketsu M (2016) Flavonoid profile and antileukemic activity of Coreopsis lanceolata flowers. Bioorg Med Chem Lett 26:2784–2787

    Article  CAS  Google Scholar 

  14. Hoffmann B, Hölzl J (1988) New chalcones from Bidens pilosa. Planta Med 54:52–54

    Article  CAS  Google Scholar 

  15. Tanimoto S, Miyazawa M, Inoue T, Okada Y, Nomura M (2009) Chemical constituents of Coreopsis lanceolata L. and their physiological activities. J Oleo Sci 58:141–146

    Article  CAS  Google Scholar 

  16. Nakabo D, Okano Y, Kandori N, Satahiro T, Kataoka N, Akamatsu J, Okada Y (2018) Molecules 23:1671

    Article  Google Scholar 

  17. Calanasan CA, MacLeod JK (1998) A diterpenoid sulphate and flavonoids from Wedelia asperrima. Phytochemistry 47:1093–1099

    Article  CAS  Google Scholar 

  18. Nacer A, Bernard A, Boustie J, Touzani R, Kabouche Z (2006) Aglycone flavonoids of Centaurea tougourensis from Algeria. Chem Nat Compd 42:230–231

    Article  CAS  Google Scholar 

  19. Özgen U, Mavi A, Terzi Z, Kazaz C, Asçi A, Kaya Y, Seçen H (2011) Relationship between chemical structure and antioxidant activity of luteolin and its glycosides isolated from Thymus sipyleus subsp. sipyleus var. sipyleus. Rec Nat Prod 5:12–21

    Google Scholar 

  20. Park Y, Moon BH, Yang H, Lee Y, Lee E, Lim Y (2007) Complete assignments of NMR data of 13 hydroxymethoxyflavones. Magn Reson Chem 45:1072–1075

    Article  CAS  Google Scholar 

  21. Benabderrahmane W, Amrani A, Benaissa O, Lores M, Lamas JP, de Miguel T, Benayache S (2020) Chemical constituents, in vitro antioxidant and antimicrobial properties of ethyl acetate extract obtained from Cytisus triflorus l’Her. Nat Prod Res 34:1586–1590

    Article  CAS  Google Scholar 

  22. Basnet P, Matsushige K, Hase K, Kadota S, Namba T (1996) Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol Pharm Bull 19:1479–1484

    Article  CAS  Google Scholar 

  23. Meng Q, Qi X, Fu Y, Chen Q, Cheng P, Yu X, Bian H (2020) Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J Ethnopharmacol 248: 112326

  24. Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D (2019) Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules 9:430

    Article  CAS  Google Scholar 

  25. Varshney R, Mishra R, Das N, Sircar D, Roy P (2019) A comparative analysis of various flavonoids in the regulation of obesity and diabetes: an in vitro and in vivo study. J Funct Foods 59:194–205

    Article  CAS  Google Scholar 

  26. Matsuo Y, Iguchi T, Kuroda M, Ishiguro M, Nara T, Takatori K, Mimaki Y (2020) Identification of flavone C-glycosides from Glycyrrhiza uralensis seeds and their effects on AMPK activation. Shoyakugaku Zasshi 74:108–109

    Google Scholar 

  27. Janda E, Martino C, Riillo C, Parafati M, Lascala A, Mollace V, Boutin JA (2021) Apigenin and luteolin regulate autophagy by targeting NRH-Quinone oxidoreductase 2 in liver cells. Antioxidants 10:776

    Article  CAS  Google Scholar 

  28. Si Q, Shi Y, Huang D, Zhang N (2020) Diosmetin alleviates hypoxia-induced myocardial apoptosis by inducing autophagy through AMPK activation. Mol Med Rep 22:1335–1341

    Article  CAS  Google Scholar 

  29. He WS, Wu Y, Ren MJ, Yu ZY, Zhao XS (2022) Diosmetin inhibits apoptosis and activates AMPK induced autophagy in myocardial damage under hypoxia environment. Kaohsiung J Med Sci 38:139–148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. W. Ohtani and Mr. M. Fukutome for collecting the plant materials.

Funding

This work was supported by JSPS KAKENHI (Grant Number JP18K06722).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Matsuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 860 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, Y., Fujii, T., Kato, H. et al. Lanceolanone A, a new biflavanone, and a chalcone glucoside from the flower heads of Coreopsis lanceolata and their aldose reductase inhibitory activity and AMPK activation. J Nat Med 77, 109–117 (2023). https://doi.org/10.1007/s11418-022-01651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01651-0

Keywords

Navigation