Skip to main content
Log in

Structure–activity relationship of a housefly neuroprotective dodecapeptide that activates the nuclear factor erythroid 2-related factor 2 pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Neuroprotective antioxidants, especially peptide-based antioxidants, are effective against oxidative stress in neurodegenerative disorders. In this study, we measured the neuroprotective effects of the antioxidant peptide DFTPVCTTELGR (DR12) from housefly Musca domestica L. pupae. Treatment of PC12 and HT22 cells with DR12 significantly reduced glutamate-induced cytotoxicity. Peptide DR12 appeared to exert its neuroprotective effects by attenuating production of reactive oxygen species and malonaldehyde, upregulating the endogenous antioxidants superoxide dismutase and glutathione, and reversing the loss of mitochondrial membrane potential. In addition, DR12 treatment activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Structure–activity analysis indicated that the superior neuroprotective function of DR12 was related to its cysteine residue. In summary, DR12 may be an attractive therapeutic peptide or precursor to treat neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. https://doi.org/10.1038/nrd1330

    Article  CAS  Google Scholar 

  2. Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R (2016) Nrf2–ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Therapeut 157:84–104. https://doi.org/10.1016/j.pharmthera.2015.11.003

    Article  CAS  Google Scholar 

  3. Moldogazieva NT, Mokhosoev IM, Mel Nikova TI, Porozov YB, Terentiev AA (2019) Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev 2019:1–14. https://doi.org/10.1155/2019/3085756

    Article  CAS  Google Scholar 

  4. Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, Tan J, Cao C, Olcese JM, Arendash GW, Bradshaw PC (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51:75–86. https://doi.org/10.1111/j.1600-079X.2011.00864.x

    Article  CAS  Google Scholar 

  5. Devore EE, Grodstein F, van Rooij FJA, Hofman A, Stampfer MJ, Witteman JCM, Breteler MMB (2010) Dietary antioxidants and long-term risk of dementia. Arch Neurol 67:819–825. https://doi.org/10.1001/archneurol.2010.144

    Article  Google Scholar 

  6. Lm T, Flint BM (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  Google Scholar 

  7. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383. https://doi.org/10.1124/pr.117.014753

    Article  CAS  Google Scholar 

  8. Daliri E, Oh D, Lee B (2017) Bioactive Peptides. Foods 6:1–21. https://doi.org/10.3390/foods6050032

    Article  CAS  Google Scholar 

  9. Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F (2021) Carnosine protects macrophages against the toxicity of Aβ1-42 oligomers by decreasing oxidative stress. Biomedicines 9:1–22. https://doi.org/10.3390/biomedicines9050477

    Article  CAS  Google Scholar 

  10. Caruso G, Godos J, Castellano S, Micek A, Murabito P, Galvano F, Ferri R, Grosso G, Caraci F (2021) The therapeutic potential of carnosine/anserine supplementation against cognitive decline: a systematic review with meta-analysis. Biomedicines 9:1–17. https://doi.org/10.3390/biomedicines9030253

    Article  CAS  Google Scholar 

  11. Zhao T, Su G, Wang S, Zhang Q, Zhang J, Zheng L, Sun B, Zhao M (2017) Neuroprotective effects of acetylcholinesterase inhibitory peptides from anchovy (Coilia mystus) against glutamate-induced toxicity in PC12 cells. J Agr Food Chem 65:11192–11201. https://doi.org/10.1021/acs.jafc.7b03945

    Article  CAS  Google Scholar 

  12. Hou L, Shi Y, Zhai P, Le G (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111:227–231. https://doi.org/10.1016/j.jep.2006.11.015

    Article  Google Scholar 

  13. Sun T, Zhang S, Yang W, Zhao Z, Yang D (2019) Housefly pupae-derived antioxidant peptides exerting neuroprotective effects on hydrogen peroxide-induced oxidative damage in PC12 cells. Molecules 24:1–18. https://doi.org/10.3390/molecules24244486

    Article  CAS  Google Scholar 

  14. Liao L, Shi J, Jiang C, Zhang L, Feng L, Liu J, Zhang J (2019) Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 125:82–90. https://doi.org/10.1016/j.neuint.2019.01.026

    Article  CAS  Google Scholar 

  15. Lee J, Kang U, Seo EK, Kim YS (2016) Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12- O -tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Int Immunopharmacol 34:155–164. https://doi.org/10.1016/j.intimp.2016.02.026

    Article  CAS  Google Scholar 

  16. Bradley P, Kira MSM, Baker D (2005) Biochemistry: toward high-resolution de novo structure prediction for small proteins. Science 309:1868–1871. https://doi.org/10.1126/science.1113801

    Article  CAS  Google Scholar 

  17. Zhang Y, Weber JK, Zhou R (2016) Folding and stabilization of native-sequence-reversed proteins. Sci Rep 6:1–7. https://doi.org/10.1038/srep25138

    Article  CAS  Google Scholar 

  18. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:1–18. https://doi.org/10.3389/fncel.2015.00091

    Article  CAS  Google Scholar 

  19. Lavrovsky Y, Chatterjee B, Clark RA, Roy AK (2000) Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 35:521–532. https://doi.org/10.1016/s0531-5565(00)00118-2

    Article  CAS  Google Scholar 

  20. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  21. Johnson DA, Johnson JA (2015) Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Bio Med 88:253–267. https://doi.org/10.1016/j.freeradbiomed.2015.07.147

    Article  CAS  Google Scholar 

  22. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2- antioxidant response element signaling pathway and its activation by oxidative stress. J Bio Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200

    Article  CAS  Google Scholar 

  23. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789. https://doi.org/10.1080/03602530600971974

    Article  CAS  Google Scholar 

  24. Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF (2019) An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: a novel approach to treating neurodegenerative disorders. Neurochem Int 122:47–58. https://doi.org/10.1016/j.neuint.2018.11.003

    Article  CAS  Google Scholar 

  25. Butterfield DA, Boyd Kimball D (2018) Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 151:459–487. https://doi.org/10.1111/jnc.14589

    Article  CAS  Google Scholar 

  26. McShane R, Westby MJ, Roberts E (2019) Memantine for dementia. Cochrane Database Syst Rev 3:1–291. https://doi.org/10.1002/14651858.CD003154.pub6

    Article  Google Scholar 

  27. Birks J, Harvey RJ (2018) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 6:1–338. https://doi.org/10.1002/14651858.CD001190.pub3

    Article  Google Scholar 

  28. Ruela ALM, Carvalho FC, Pereira GR (2016) Exploring the phase behavior of monoolein/oleic acid/water systems for enhanced donezepil administration for alzheimer disease treatment. J Pharm Sci-US 105:71–77. https://doi.org/10.1016/j.xphs.2015.10.016

    Article  CAS  Google Scholar 

  29. François M, Sicsic J, Pelletier Fleury N (2018) Drugs for dementia and excess of hospitalization: a longitudinal french study. J Alzheimer’s Dis 61:1627–1637. https://doi.org/10.3233/JAD-170371

    Article  CAS  Google Scholar 

  30. Deardorff WJ, Grossberg G (2016) A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Devel Ther 10:3267–3279. https://doi.org/10.2147/DDDT.S86463

    Article  CAS  Google Scholar 

  31. Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon M, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O (2019) Antioxidant and anti-apoptotic activity of octadecaneuropeptide against 6-OHDA toxicity in cultured rat astrocytes. J Mol Neurosci 69:1–16. https://doi.org/10.1007/s12031-018-1181-4

    Article  CAS  Google Scholar 

  32. Song IK, Lee JJ, Cho JH, Jeong J, Shin DH, Lee KJ (2016) Degradation of redox-sensitive proteins including peroxiredoxins and DJ-1 is promoted by oxidation-induced conformational changes and ubiquitination. Sci Rep 6:1–15. https://doi.org/10.1038/srep34432

    Article  CAS  Google Scholar 

  33. Vajrychova M, Salovska B, Pimkova K, Fabrik I, Tambor V, Kondelova A, Bartek J, Hodny Z (2019) Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology. Redox Biol 24:1–7. https://doi.org/10.1016/j.redox.2019.101227

    Article  CAS  Google Scholar 

  34. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ (2019) Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51:1–13. https://doi.org/10.1038/s12276-019-0355-7

    Article  CAS  Google Scholar 

  35. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 60:4077–4085. https://doi.org/10.1242/jcs.00739

    Article  CAS  Google Scholar 

  36. Copple IM, Dinkova-Kostova AT, Kensler TW, Liby KT, Wigley WC (2017) NRF2 as an emerging therapeutic target. Oxid Med Cell Longev 2017:1–2. https://doi.org/10.1155/2017/8165458

    Article  CAS  Google Scholar 

  37. Lastres-Becker I, García-Yagüe AJ, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in parkinson’s disease. Antioxid Redox Signal 25:61–77. https://doi.org/10.1089/ars.2015.6549

    Article  CAS  Google Scholar 

  38. Jazwa A, Cuadrado A (2010) Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets 11:1517–1531. https://doi.org/10.2174/1389450111009011517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Key-Area Research and Development Program of Guangdong Province (grant number 2020B020221002), the Guangdong Agricultural Science and Technology Innovation and Promotion Project of China (grant numbers 2020KJ142 & 2019KJ142) and the National Key Research and Development Program of China (grant number 2017YFC1701100). The authors thank AiMi Academic Services (www.aimieditor.com) for the English language editing and review services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchun Xian or Depo Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Qian, C., Li, H. et al. Structure–activity relationship of a housefly neuroprotective dodecapeptide that activates the nuclear factor erythroid 2-related factor 2 pathway. J Nat Med 77, 96–108 (2023). https://doi.org/10.1007/s11418-022-01650-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01650-1

Keywords

Navigation