Skip to main content
Log in

Four new glucosides from the aerial parts of Equisetum sylvaticum

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Two previously undescribed megastigmane glucosides, (3S)-3-hydroxy-4-oxo-7,8-dihydro-β-ionone-3-O-β-d-glucopyranoside (1), (3S)-3-hydroxy-4-oxo-β-ionone-3-O-β-d-glucopyranoside (2), an apocarotenoid glucoside named equiseoside A (3) and an unusual aromatic compound with a glucose-fused skeleton named equiseoside B (4), together with 35 known compounds (539) were isolated from the aerial parts of Equisetum sylvaticum. The structures of these compounds were elucidated by spectroscopic methods, including 1D and 2D NMR, IR, CD, and HR–MS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Christenhusz MJM, Bangiolo L, Chase MW, Fay MF, Husby C, Witkus M, Viruel J (2019) Phylogenetics, classification and typification of extant horsetails (Equisetum, Equisetaceae). Bot J Linn Soc 189(4):311–352. https://doi.org/10.1093/botlinnean/boz002

    Article  Google Scholar 

  2. Aly HF, Geiger H, Schücker U, Waldrum H, Velde GV, Mabry TJ (1975) Die flavonolglykoside von Equisetum silvaticum. Phytochemistry 14(7):1613–1615. https://doi.org/10.1016/0031-9422(75)85360-X

    Article  CAS  Google Scholar 

  3. Mimica-Dukic N, Simin N, Cvejic J, Jovin E, Orcic D, Bozin B (2008) Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules 13(7):1455–1464. https://doi.org/10.3390/molecules13071455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batir-Marin D, Boev M, Cioanca O, Mircea C, Burlec AF, Beppe GJ, Spac A, Corciova A, Hritcu L, Hancianu M (2021) Neuroprotective and antioxidant enhancing properties of selective Equisetum extracts. Molecules 26(9):2565. https://doi.org/10.3390/molecules26092565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Řezanka T (1998) Branched and very long-chain dicarboxylic acids from Equisetum species. Phytochemistry 47(8):1539–1543. https://doi.org/10.1016/s0031-9422(97)00774-7

    Article  Google Scholar 

  6. Becher E, Albrecht R, Bernhard K, Leuenberger HGW, Mayer H, Müller RK, Schüep W, Wagner HP (1981) Synthese von Astaxanthin aus β-Jonon. I. Erschliessung der enantiomeren C15-Wittigsalze durch chemische und mikrobiologische Racematspaltung von (±)-3-Acetoxy-4-oxo-β-jonon. Helv Chim Acta 64(7):2419–2435. https://doi.org/10.1002/hlca.19810640750

    Article  CAS  Google Scholar 

  7. Pabst A, Barron D, Sémon E, Schreier P (1992) Two diastereomeric 3-oxo-α-ionol β-d-glucosides from raspberry fruit. Phytochemistry 31(5):1649–1652. https://doi.org/10.1016/0031-9422(92)83121-E

    Article  CAS  Google Scholar 

  8. Calis I, Lahloub MF, Rogenmoser E, Sticher O (1984) Isomartynoside, a phenylpropanoid glycoside from Galeopsis pubescens. Phytochemistry 23(10):2313–2315. https://doi.org/10.1016/S0031-9422(00)80542-7

    Article  CAS  Google Scholar 

  9. Fan CQ, Yue JM (2003) Biologically active phenols from Saussurea medusa. Bioorg Med Chem 11(5):703–708. https://doi.org/10.1016/S0968-0896(02)00470-4

    Article  CAS  PubMed  Google Scholar 

  10. Teshima K, Kaneko T, Ohtani K, Kasai R, Lhieochaiphant S, Picheansoonthon C, Yamasaki K (1998) Sulfur-containing glucosides from Clinacanthus nutans. Phytochemistry 48(5):831–835. https://doi.org/10.1016/S0031-9422(97)00956-4

    Article  CAS  Google Scholar 

  11. Chang J, Case R (2005) Phenolic glycosides and ionone glycoside from the stem of Sargentodoxa cuneata. Phytochemistry 66(23):2752–2758. https://doi.org/10.1016/j.phytochem.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  12. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Piscopo V, Monaco P (2006) Spectroscopic identification and antioxidant activity of glucosylated carotenoid metabolites from Cydonia vulgaris fruits. J Agric Food Chem 54(25):9592–9597. https://doi.org/10.1021/jf062125e

    Article  CAS  PubMed  Google Scholar 

  13. Miyase T, Ueno A, Takizawa N, Kobayashi H, Oguchi H (1988) Studies on the glycosides of Epimedium grandiflorum MORR. Var. thunbergianum (Miq.) NAKAI. III. Chem Pharm Bull 36(7):2475–2484. https://doi.org/10.1248/cpb.36.2475

    Article  CAS  Google Scholar 

  14. Kuang HX, Yang BY, Xia Y, Feng WS (2008) Chemical constituents from the flower of Datura metel L. Arch Pharm Res 31:1094–1097. https://doi.org/10.1007/s12272-001-1274-6

    Article  CAS  PubMed  Google Scholar 

  15. Zhang F, Wu ZJ, Sun LN, Wang J, Tao X, Chen WS (2012) Iridoid glucosides and a C13-norisoprenoid from Lamiophlomis rotata and their effects on NF-κB activation. Bioorg Med Chem Lett 22(13):4447–4452. https://doi.org/10.1016/j.bmcl.2012.04.087

    Article  CAS  PubMed  Google Scholar 

  16. Murakami T, Kohno K, Ninomiya K, Matsuda H, Yoshikawa M (2001) Medicinal foodstuffs. XXV. Hepatoprotective principle and structures of ionone glucoside, phenethyl glycoside, and flavonol oligoglycosides from young seedpods of garden peas Pisum sativum L. Chem Pharm Bull 49(8):1003–1008. https://doi.org/10.1248/cpb.49.1003

    Article  CAS  Google Scholar 

  17. Sueyoshi E, Liu H, Matsunami K, Otsuka H, Shinzato T, Aramoto M, Takeda Y (2006) Bridelionosides A-F: megastigmane glucosides from Bridelia glauca f. balansae. Phytochemistry 67(22):2483–2493. https://doi.org/10.1016/j.phytochem.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Y, Jin M, Jin C, Ye C, Wang J, Wang R, Wei C, Zhou W, Li G (2019) Megastigmane derivatives from Corispermum mongolicum and their anti-inflammatory activities. Phytochem Lett 30:186–189. https://doi.org/10.1016/j.phytol.2019.02.012

    Article  CAS  Google Scholar 

  19. Kang U, Ryu SM, Lee D, Seo EK (2018) Chemical Constituents of the Leaves of Brassica oleracea var. acephala. Chem Nat Compd 54:1023–1026. https://doi.org/10.1007/s10600-018-2542-5

    Article  CAS  Google Scholar 

  20. Matsumoto T, Nakamura S, Nakashima S, Ohta T, Ogawa K, Fukaya M, Tsukioka J, Hasei T, Watanabe T, Matsuda H (2017) Neolignan and megastigmane glucosides from the aerial parts of Isodon japonicus with cell protective effects on BaP-induced cytotoxicity. Phytochemistry 137:101–108. https://doi.org/10.1016/j.phytochem.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  21. Hu J, Ma W, Li N, Wang KJ (2017) Antioxidant and anti-inflammatory flavonoids from the flowers of Chuju, a medical cultivar of Chrysanthemum Morifolim Ramat. J Mex Chem Soc 61(4):282–289

    CAS  Google Scholar 

  22. Liu YL, Ho DK, Cassady JM, Cook VM, Baird WM (1992) Isolation of potential cancer chemopreventive agents from Eriodictyon californicum. J Nat Prod 55(3):357–363. https://doi.org/10.1021/np50081a012

    Article  CAS  PubMed  Google Scholar 

  23. Liu R, Zhang H, Yuan M, Zhou TuQ, Liu JJ, Wang J (2013) Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules 18(9):11496–11511. https://doi.org/10.3390/molecules180911496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wada H, Satake T, Murakami T, Kojima T, Saiki Y, Chen C (1985) Chemische und chemotaxonomische untersuchungen der pterophyten LIX. Chemische untersuchungen der inhaltsstoffe von Alsophila spinulosa. Chem Pharm Bull 33(10):4182–4187. https://doi.org/10.1248/cpb.33.4182

    Article  CAS  Google Scholar 

  25. Soon-Ho Y, Jung KH, Ik-Soo L (2003) A polyacetylene and flavonoids from Cirsium rhinoceros. Arch Pharm Res 26:128. https://doi.org/10.1007/BF02976657

    Article  Google Scholar 

  26. Flamini G, Antognoli E, Morelli I (2001) Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry 57(4):559–564. https://doi.org/10.1016/s0031-9422(01)00066-8

    Article  CAS  PubMed  Google Scholar 

  27. Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62(2):229–237. https://doi.org/10.1016/s0031-9422(02)00486-7

    Article  CAS  PubMed  Google Scholar 

  28. Qi J, Lu JJ, Liu JH, Yu BY (2009) Flavonoid and a rare benzophenone glycoside from the leaves of Aquilaria sinensis. Chem Pharm Bull 57(2):134–137. https://doi.org/10.1248/cpb.57.134

    Article  CAS  Google Scholar 

  29. Ozawa T, Sakuta H, Negishi O, Kajiura I (1995) Identification of species-specific flavone glucosides useful as chemotaxonomic markers in the genus Pyrus. Biosci Biotechnol Biochem 59(12):2244–2246. https://doi.org/10.1271/bbb.59.2244

    Article  CAS  Google Scholar 

  30. Panyadee A, Sahakitpichan P, Ruchirawat S, Kanchanapoom T (2015) 5-Methyl ether flavone glucosides from the leaves of Bruguiera gymnorrhiza. Phytochem Lett 11:215–219. https://doi.org/10.1016/j.phytol.2014.12.021

    Article  CAS  Google Scholar 

  31. Veit M, Geiger H, Czygan FC, Markham KR (1990) Malonylated flavone 5-O-glucosides in the barren sprouts of Equisetum arvense. Phytochemistry 29(8):2555–2560. https://doi.org/10.1016/0031-9422(90)85187-K

    Article  CAS  Google Scholar 

  32. Ibrahim A, Khalifa SI, Khafagi I, Youssef DT, Khan S, Mesbah M, Khan I (2008) Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chem Pharm Bull 56(9):1253–1258. https://doi.org/10.1248/cpb.56.1253

    Article  CAS  Google Scholar 

  33. Oyama K, Kondo T (2004) Total synthesis of apigenin 7,4′-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues. Tetrahedron 60(9):2025–2034. https://doi.org/10.1016/j.tet.2004.01.001

    Article  CAS  Google Scholar 

  34. Markham KR, Ternai B, Stanley R, Geiger H, Mabry TJ (1978) Carbon-13 NMR studies of flavonoids—III: naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron 34(9):1389–1397. https://doi.org/10.1016/0040-4020(78)88336-7

    Article  CAS  Google Scholar 

  35. Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D (2010) Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry 71(10):1076–1084. https://doi.org/10.1016/j.phytochem.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  36. Kato T, Morita Y (1990) C-glycosylflavones with acetyl substitution from Rumex acetosa L. Chem Pharm Bull 38(8):2277–2280. https://doi.org/10.1248/cpb.38.2277

    Article  CAS  Google Scholar 

  37. Pan J, Zhang S, Yan L, Tai J, Xiao Q, Zou K, Zhou Y, Wu J (2008) Separation of flavanone enantiomers and flavanone glucoside diastereomers from Balanophora involucrata Hook. f. by capillary electrophoresis and reversed-phase high-performance liquid chromatography on a C18 column. J Chromatogra A 1185(1):117–129. https://doi.org/10.1016/j.chroma.2008.01.049

    Article  CAS  Google Scholar 

  38. Saleem M, Musaddiq S, Riaz N, Zubair M, Ashraf M, Nasar R, Jabbar A (2013) Ecdysteroids from the flowers of Aerva javanica. Steroids 78(11):1098–1102. https://doi.org/10.1016/j.steroids.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  39. Shigemori H, Sato Y, Kagata T, Kobayashi J (1999) Palythoalones A and B, new ecdysteroids from the marine zoanthid Palythoa australiae. J Nat Prod 62(2):372–374. https://doi.org/10.1021/np9803880

    Article  CAS  PubMed  Google Scholar 

  40. Matsuda N, Kikuchi M (1996) Studies on the constituents of Lonicera Species. X. Neolignan glycosides from the leaves of Lonicera gracilipes var. glandulosa MAXIM. Chem Pharm Bull 44(9):1676–1679. https://doi.org/10.1248/cpb.44.1676

    Article  CAS  Google Scholar 

  41. Kuang HX, Xia YG, Yang BY, Wang QH, Lü SW (2009) Lignan constituents from Chloranthus japonicus Sieb. Arch Pharmacal Res 32(3):329–334. https://doi.org/10.1007/s12272-009-1303-1

    Article  CAS  Google Scholar 

  42. Bateman L, Breeden SW, O’Leary P (2008) New chiral diamide ligands: synthesis and application in allylic alkylation. Tetrahedron Asymmetry 19(3):391–396. https://doi.org/10.1016/j.tetasy.2008.01.018

    Article  CAS  Google Scholar 

  43. Krajewski D, Tóth G, Schreier P (1996) 2-Ethyl-3-methylmaleimide N-β-d-glucopyranoside from the leaves of mangosteen (Garcinia mangostana). Phytochemistry 43(1):141–143. https://doi.org/10.1016/0031-9422(96)00276-2

    Article  CAS  Google Scholar 

  44. Wu Q, Yang XW (2009) The constituents of Cibotium barometz and their permeability in the human Caco-2 monolayer cell model. J Ethnopharmacol 125(3):417–422. https://doi.org/10.1016/j.jep.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  45. Wu PL, Hsu YL, Zao CW, Damu AG, Wu TS (2005) Constituents of Vittaria anguste-elongata and their biological activities. J Nat Prod 68(8):1180–1184. https://doi.org/10.1021/np050060o

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 22K06678. The measurements of NMR and HR–ESI–MS were performed with Bruker Avance III 500 and LTQ Orbitrap XL spectrometer, respectively, at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

Author information

Authors and Affiliations

Authors

Contributions

Design research: KM and ZW. Conducting experiments: ZW and YT. Analyzing data: ZW and KM. Writing this paper: ZW and KM. Funding acquisition: KM. Supervision: KM. Measurement data and bioassay: KM, ZW, SS, YY, SK, and HO.

Corresponding author

Correspondence to Katsuyoshi Matsunami.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2573 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tian, Y., Sugimoto, S. et al. Four new glucosides from the aerial parts of Equisetum sylvaticum. J Nat Med 76, 832–841 (2022). https://doi.org/10.1007/s11418-022-01643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01643-0

Keywords

Navigation