Skip to main content

Advertisement

Log in

Ursolic acid and its isomer oleanolic acid are responsible for the anti-dementia effects of Ocimum sanctum in olfactory bulbectomized mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This study aims to clarify the bioactive constituents responsible for the anti-dementia effects of Ocimum sanctum Linn. ethanolic extract (OS) using olfactory bulbectomized (OBX) mice, an animal model of dementia. The effects of OS or its extract further fractionated with n-hexane (OS-H), ethyl acetate (OS-E), and n-butanol (OS-B) on the spatial cognitive deficits of OBX mice were elucidated by the modified Y-maze tests. The effects of the major constituents of the most active OS fraction were also elucidated using the reference drug donepezil. The administration of OS and OS-E ameliorated the spatial cognitive deficits caused by OBX, whereas OS-H or OS-B had no effect. Two major constituents, ursolic acid (URO) and oleanolic acid (OLE), and three minor constituents were isolated from OS-E. URO (6 and 12 mg/kg) and OLE (24 mg/kg) attenuated the OBX-induced cognitive deficits. URO (6 mg/kg) and donepezil reversed the OBX-induced down-regulation of vascular endothelial growth factor (VEGF) and choline acetyltransferase expression levels in the hippocampus. URO inhibited the ex vivo activity of acetylcholinesterase with similar efficacy to donepezil. URO inhibited the in vitro activity of acetylcholinesterase (IC50 = 106.5 μM), while the effects of OS, OS-E, and other isolated compounds were negligible. These findings suggest that URO and OLE are responsible for the anti-dementia action of OS extract, whereas URO possesses a more potent anti-dementia effect than its isomer OLE. The effects of URO are, at least in part, mediated by normalizing the function of central cholinergic systems and VEGF protein expression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Olivari BS, French ME, McGuire LC (2020) The public health road map to respond to the growing dementia crisis. Innov Aging 4:igz043

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cummings J, Lee G, Zhong K, Fonseca J, Taghva K (2021) Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement 7:e12179

    Google Scholar 

  3. Kovács T (2009) Therapy of Alzheimer disease. Neuropsychopharmacol Hung 11:27–33

    PubMed  Google Scholar 

  4. Casey DA, Antimisiaris D, O’Brien J (2010) Drugs for Alzheimer’s disease: are they effective? Pharm Ther 35(4):208–211

    Google Scholar 

  5. Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cohen MM (2014) Tulsi-Ocimum sanctum: a herb for all reasons. J Ayurveda Integr Med 5:251

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rege NN, Thatte UM, Dahanukar SA (1999) Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res 13:275–291

    Article  CAS  PubMed  Google Scholar 

  8. Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacogn Rev 4:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le XT, Nguyen HT, Nguyen TV, Pham HTN, Nguyen PT, Nguyen KM et al (2021) Ocimum sanctum Linn. extract improves cognitive deficits in olfactory bulbectomized mice via the enhancement of central cholinergic systems and VEGF expression. Evid Based Complement Alternat Med 2021:6627648

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bobkova N, Vorobyov V, Medvinskaya N, Aleksandrova I, Nesterova I (2008) Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels. Brain Res 1232:185–194

    Article  CAS  PubMed  Google Scholar 

  11. Avetisyan A, Samokhin A, Alexandrova I, Zinovkin R, Simonyan R, Bobkova N (2016) Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized mice, a model of Alzheimer’s disease. Biochem Mosc 81:615–623

    Article  CAS  Google Scholar 

  12. Hu J, Wang X, Liu D, Wang Q, Zhu LQ (2012) Olfactory deficits induce neurofilament hyperphosphorylation. Neurosci Lett 506:180–183

    Article  CAS  PubMed  Google Scholar 

  13. Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A et al (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138:9–15

    Article  CAS  PubMed  Google Scholar 

  14. Mizuki D, Qi Z, Tanaka K, Fujiwara H, Ishikawa T, Higuchi Y et al (2014) Butea superba–induced amelioration of cognitive and emotional deficits in olfactory bulbectomized mice and putative mechanisms underlying its actions. J Pharmacol Sci 124:457–467

    Article  CAS  PubMed  Google Scholar 

  15. Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    Article  PubMed  Google Scholar 

  16. Hohman TJ, Bell SP, Jefferson AL, AsDN I (2015) The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease. JAMA Neurol 72:520–529

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kimura K, Matsumoto K, Ohtake H, Oka J-I, Fujiwara H (2018) Endogenous acetylcholine regulates neuronal and astrocytic vascular endothelial growth factor expression levels via different acetylcholine receptor mechanisms. Neurochem Int 118:42–51

    Article  CAS  PubMed  Google Scholar 

  18. Inada C, Le XT, Tsuneyama K, Fujiwara H, Miyata T, Matsumoto K (2013) Endogenous acetylcholine rescues NMDA-induced long-lasting hippocampal cell damage via stimulation of muscarinic M1 receptors: Elucidation using organic hippocampal slice cultures. Eur J Pharmacol 699:150–159

    Article  CAS  PubMed  Google Scholar 

  19. Inada C, Niu Y, Matsumoto K, Le XT, Fujiwara H (2014) Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int 75:39–47

    Article  CAS  PubMed  Google Scholar 

  20. Gupta P, Yadav DK, Siripurapu KB, Palit G, Maurya R (2007) Constituents of Ocimum sanctum with antistress activity. J Nat Prod 70:1410–1416

    Article  CAS  PubMed  Google Scholar 

  21. Sarkar D, Srimany A, Pradeep T (2012) Rapid identification of molecular changes in tulsi (Ocimum sanctum Linn) upon ageing using leaf spray ionization mass spectrometry. Analyst 137:4559–4563

    Article  CAS  PubMed  Google Scholar 

  22. Gupta S, Prakash J, Srivastava S (2002) Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian J Exp Biol 40(7):765–773

    CAS  PubMed  Google Scholar 

  23. Baliga MS, Rao S, Rai MP, D’souza P (2016) Radio protective effects of the Ayurvedic medicinal plant Ocimum sanctum Linn. (Holy Basil): a memoir. J Cancer Res Ther 12:20

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen HT, Le XT, Phung HN, Nguyen TV, Nguyen KM (2020) Putative constituents contributing to the antidepressant-like effects of Ocimum sanctum in olfactory bulbectomized-mice. J Med Materials 25:186–192

    Google Scholar 

  25. Liang W, Zhao X, Feng J, Song F, Pan Y (2016) Ursolic acid attenuates beta-amyloid-induced memory impairment in mice. Arq Neuropsiquiatr 74:482–488

    Article  PubMed  Google Scholar 

  26. Mirza FJ, Amber S, Hassan D, Ahmed T, Zahid S (2021) Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer’s disease. Phytomedicine 83:153490

    Article  CAS  PubMed  Google Scholar 

  27. Wang K, Sun W, Zhang L, Guo W, Xu J, Liu S et al (2018) Oleanolic acid ameliorates Aβ25-35 injection-induced memory deficit in Alzheimer’s disease model rats by maintaining synaptic plasticity. CNS Neurol Disord Drug Targets 17:389–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao L, Wang J-L, Liu R, Li X-X, Li J-F, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 18:9949–9965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoo DY, Choi JH, Kim W, Nam SM, Jung HY, Kim JH et al (2013) Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model. Neurol Res 35:813–820

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen HT, Le XT, Nguyen TV, Pham HTN, Nguyen KM, Matsumoto K (2021) The antidepressant-like effects of an n-butanol fraction of Ocimum sanctum extract in unpredictable chronic mild stress-induced depression in mice. VJSTE 63(4):55–61

    Article  Google Scholar 

  31. Le XT, Pham HTN, Do PT, Fujiwara H, Tanaka K, Li F et al (2013) Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem Res 38:2201–2215

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y-J, Lu J, Wu D-m, Zheng Z-h, Zheng Y-L, Wang X-h et al (2011) Ursolic acid attenuates lipopolysaccharide-induced cognitive deficits in mouse brain through suppressing p38/NF-κB mediated inflammatory pathways. Neurobiol Learn Mem 96:156–165

    Article  CAS  PubMed  Google Scholar 

  33. Ma CM, Wu XH, Hattori M, Wang XJ, Kano Y (2009) HCV protease inhibitory, cytotoxic and apoptosis-inducing effects of oleanolic acid derivatives. J Pharm Pharm Sci 12:243–248

    Article  CAS  PubMed  Google Scholar 

  34. Yamada M, Hayashida M, Zhao Q, Shibahara N, Tanaka K, Miyata T et al (2011) Ameliorative effects of yokukansan on learning and memory deficits in olfactory bulbectomized mice. J Ethnopharmacol 135:737–746

    Article  PubMed  Google Scholar 

  35. Zhao Q, Yokozawa T, Tsuneyama K, Tanaka K, Miyata T, Shibahara N et al (2011) Chotosan (Diaoteng San)-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8) involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain. Chin Med 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  37. Kraeuter A-K, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111

    Article  CAS  PubMed  Google Scholar 

  38. Dellu F, Contarino A, Simon H, Koob G, Gold L (2000) Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 73:31–48

    Article  CAS  PubMed  Google Scholar 

  39. Seebacher W, Simic N, Weis R, Saf R, Kunert O (2003) Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn Reson Chem 41:636–638

    Article  CAS  Google Scholar 

  40. Alwahsh MAA, Khairuddean M, Chong WK (2015) Chemical constituents and antioxidant activity of Teucrium barbeyanum Aschers. Rec Nat Prod 9:159–163

    Google Scholar 

  41. Hwang SH, Kim HY, Zuo G, Wang Z, Lee JY, Lim SS (2018) Anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. Molecules 23:1752

    Article  PubMed Central  CAS  Google Scholar 

  42. Saunders NL, Summers MJ (2010) Attention and working memory deficits in mild cognitive impairment. J Clin Exp Neuropsychol 32:350–357

    Article  PubMed  Google Scholar 

  43. Yehuda S, Rabinovitz S (2014) Olfactory bulbectomy as a putative model for Alzheimer’: the protective role of essential fatty acids. PharmaNutrition 2:12–18

    Article  CAS  Google Scholar 

  44. Masurkar AV, Devanand DP (2014) Olfactory dysfunction in the elderly: basic circuitry and alterations with normal aging and Alzheimer’s disease. Curr Geriatr Rep 3:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  45. Djordjevic J, Jones-Gotman M, De Sousa K, Chertkow H (2008) Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 29:693–706

    Article  PubMed  Google Scholar 

  46. Klein J, Yan X, Johnson A, Tomljanovic Z, Zou J, Polly K et al (2021) Olfactory impairment is related to Tau pathology and neuroinflammation in Alzheimer’s disease. J Alzheimers Dis 80:1051–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeong DW, Kim YH, Kim HH, Ji HY, Yoo SD, Choi WR et al (2007) Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm Drug Disposition 28:51–57

    Article  CAS  Google Scholar 

  48. Ren C, Kong D, Ning C, Xing H, Cheng Y, Zhang Y et al (2021) Improved pharmacokinetic characteristics of ursolic acid in rats following intratracheal instillation and nose-only inhalation exposure. J Pharm Sci 110:905–913

    Article  CAS  PubMed  Google Scholar 

  49. Chen Q, Luo S, Zhang Y, Chen Z (2011) Development of a liquid chromatography–mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Anal Bioanal Chem 399:2877–2884

    Article  CAS  PubMed  Google Scholar 

  50. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D et al (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835

    Article  CAS  PubMed  Google Scholar 

  51. Simpson J, Yates C, Gordon A, St Clair D (1984) Olfactory tubercle choline acetyltransferase activity in Alzheimer-type dementia, Down’s syndrome and Huntington’s chorea. J Neurol Neurosurg Psychiatry 47:1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 106-YS.05-2016.22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xoan Thi Le.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Le, X.T., Van Nguyen, T. et al. Ursolic acid and its isomer oleanolic acid are responsible for the anti-dementia effects of Ocimum sanctum in olfactory bulbectomized mice. J Nat Med 76, 621–633 (2022). https://doi.org/10.1007/s11418-022-01609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01609-2

Keywords

Navigation