Skip to main content

Advertisement

Log in

Nacre extract from pearl oyster attenuates amyloid beta-induced memory impairment

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Shells are composed of two types of calcium carbonate polymorphs—the prismatic layer and the nacreous layer. Pearls, composed of the nacreous layer, have been used in Chinese medicine since ancient times. We have previously shown that extracts from the nacreous layer improves scopolamine-induced memory impairment. However, whether pearl ameliorates cognitive disorders induced by amyloid-β 1–40 (Aβ1–40) has not been elucidated. In this study, we investigated whether nacre extract improves memory impairment induced by intracerebroventricular injection of Aβ1–40. Administration of nacre extract led to recovery from Aβ1–40-induced impairments in object recognition, short-term memory, and spatial memory. Nacre extract reversed the increase in lipid peroxidation caused by Aβ1–40 in the cerebral cortex by increasing the expression of catalase and superoxide dismutase. In addition, nacre extract recovered the expression and phosphorylation of cyclic AMP response element-binding protein (CREB), which decreased with Aβ1–40 treatment, and increased the expression of brain-derived neurotrophic factor and neuropeptide Y, which are regulated by CREB. Nacre extract also suppressed acetylcholine esterase activity and Aβ1–40-induced tau phosphorylation. Histochemical analysis of the hippocampus region showed that the nacre extract protected against Aβ1–40-induced neuronal loss in the hippocampus. These results suggest that nacre extract protects against Aβ1–40-induced neuronal cell death by suppressing oxidative stress and increasing the expression and phosphorylation of CREB.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Calabrò M, Rinaldi C, Santoro G, Crisafulli C (2021) Biological pathways of Alzheimer’s disease. A review. AIMS Neurosci 8:86–132

    PubMed  Google Scholar 

  2. Guarino A, Favieri F, Boncompagni I, Agostini F, Cantone M, Casagrande M (2018) Executive functions in Alzheimer’s disease. A systematic review. Front Aging Neurosci 10:437

    PubMed  Google Scholar 

  3. Congdon E, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15:40

    PubMed  PubMed Central  Google Scholar 

  5. Cheng YJ, Lin CH, Lane HY (2021) Involvement of cholinergic, adrenergic, and glutamatergic network modulation with cognitive dysfunction in Alzheimer’s disease. Int J Mol Sci 22:2283

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Majdi A, Sadigh-Eteghad S, Aghsan SR, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J (2020) Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Neuroscience 31:391–413

    CAS  Google Scholar 

  7. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160

    CAS  PubMed  Google Scholar 

  8. Whittington RA, Planel E, Terrando N (2017) Impaired resolution of inflammation in Alzheimer’s disease. A review. Front Immunol 8:1464

    PubMed  PubMed Central  Google Scholar 

  9. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. A J Prog Neurosurg Neurol Neurosci 39:73–82

    CAS  Google Scholar 

  10. Mendonça A, Ton M, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, Oliveira TG, Campos-Toimil M, Meyrelles SS, Pereira TMC, Vasquez EC (2020) Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid Med Cell Longev 2020:2638703

    Google Scholar 

  11. Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121

    PubMed  PubMed Central  Google Scholar 

  12. Agnihotri A, Aruoma OI (2020) Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics, and environmental chemicals. J Am Coll Nutr 39:16–27

    CAS  PubMed  Google Scholar 

  13. Maurer SV, Williams CL (2017) The cholinergic system modulates memory and hippocampal plasticity via its interaction with non-neuronal cells. Front Immunol 8:1489

    PubMed  PubMed Central  Google Scholar 

  14. Hoshi M, Takashima A, Murayama M, Yastake K, Yoshida N, Ishiguro K, Hoshino T, Imahori K (1997) Nontoxic amyloid β peptide1-42 suppresses acetylcholine synthesis. Possible role of cholinergic dysfunction in Alzheimer’s disease. J Biol Chem 272:2038–2041

    CAS  PubMed  Google Scholar 

  15. Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K (2001) Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973

    CAS  PubMed  Google Scholar 

  16. Grundke-Iqbal I, Iqbal K, Tung YC (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer’s cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amidfara M, Oliveira J, Kucharskac E, Budnid J, Kime YK (2020) Role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 257:118020

    Google Scholar 

  18. Du Q, Zhu X, Si J (2020) Angelica polysaccharide ameliorates memory impairment in AD rats by activating the BDNF/TrkB/CREB pathway. Exp Biol Med 245:1–10

    CAS  Google Scholar 

  19. Mishraacd SK, Hidaub MK, Raiac S (2021) Memantine treatment exerts an antidepressant-like effect by preventing hippocampal mitochondrial dysfunction and memory impairment via upregulation of CREB/BDNF signaling in a rat model of chronic unpredictable stress-induced depression. Neurochem Int 142:104932

    Google Scholar 

  20. Lee SS, Kim CJ, Shin MS, Lim BV (2020) Treadmill exercise ameliorates memory impairment through the ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J Exerc Rehabil 16:49–57

    PubMed  PubMed Central  Google Scholar 

  21. Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93:1412–1421

    CAS  PubMed  Google Scholar 

  22. Michalski B, Fahnestock M (2003) Probrain-derived neurotrophic factor is decreased in the parietal cortex in Alzheimer’s disease. Mol Brain Res 111:148–154

    CAS  PubMed  Google Scholar 

  23. Garzon D, Yu G, Fahnestock MA (2002) new brain-derived neurotrophic factor transcript and decreased inbrain-derived neurotrophic factor transcripts 1, 2, and 3 in the Alzheimer’s disease parietal cortex. J Neurochem 82:1058–1064

    CAS  PubMed  Google Scholar 

  24. Zhang L, Fang Y, Lian Y, Chen Y, Wu T, Zheng Y, Zong H, Sun L, Zang R, Wang Z, Xu Y (2015) Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer’s disease induced by Aβ1–42. PLoS ONE 10:e0122415

    PubMed  PubMed Central  Google Scholar 

  25. Oh JH, Choi JS, Nam TJ (2018) Fucosterol from an edible brown algae Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar Drugs 16:368

    CAS  PubMed Central  Google Scholar 

  26. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HTJ, Mufson EJ, Salehi A, Fahnestock M (2009) Decreased brain-derived neurotrophic factor depths on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 22:9321–9329

    Google Scholar 

  27. Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, Strooper BD, Hardy J, Vassar R, Winblad B, Saido TC (2017) APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 36:2473–2487

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Giselaa EC, Laiaa MG, Jofrea GB, Sandra V (2017) Mouse models of Alzheimer’s disease. J Alzheimers Dis 57:1171–1183

    Google Scholar 

  29. Halawany AMEI, Sayed NSEL, Abdallah HM, Dine RSEI (2017) Protective effects of gingerol on streptozotocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of β-amyloid, COX-2, alpha-, beta - secretases, and APH1a. Sci Rep 7:2902

    PubMed  PubMed Central  Google Scholar 

  30. Wu C, Yang L, Tucker D, Dong Y, Zhu L, Duan R, Liu TCI, Zhang Q (2018) Beneficial effects of exercise pretreatment in a sporadic Alzheimer’s rat model. Med Sci Sports Exerc 50:945–956

    PubMed  PubMed Central  Google Scholar 

  31. Kang S, Moon NR, Kim DS, Kim HS, Park S (2015) Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with amyloid. Peptides 71:84–93

    CAS  PubMed  Google Scholar 

  32. Malkov A, Popova I, Ivanov A, Jang SS, Yoon SY, Osypov A, Huang Y, Zilberter Y, Zilberter M (2020) Aβ-induced NOX2 activation underlies oxidative stress leading to brain hypometabolism and hyperactivity in Alzheimer’s disease. bioRxiv. https://doi.org/10.1101/2020.08.12.248492

    Article  Google Scholar 

  33. Shekarian M, Komaki A, Shahidi S, SarihiIraj A, Raoufi R (2020) The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav Brain Res 383:112512

    CAS  PubMed  Google Scholar 

  34. Alisavari N, Soleimani-Asl S, Zarei M, Hashemi-Firouzi N, Shahidi S (2021) Protective effect of chronic administration of pelargonidin on neuronal apoptosis and memory process in amyloid-beta-treated rats. Avicenna J Phytomed 11(4):407–416

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Santos VV, Stark R, Rial D, Silva HB, Bayliss JA, Lemus MB, Davies JS, Cunha RA, Prediger RD, Andrews ZB (2017) Acyl ghrelin improves cognition, synaptic plasticity deficits, and neuroinflammation following amyloid β (Aβ1–40) administration in mice. J Neuroendocrinol. https://doi.org/10.1111/jne.12476

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang JX, Li SR, Yao S, Bi QR, Hou JJ, Cai LY, Han SM, Wu WY, Guo DA (2016) Anticonvulsant and sedative–hypnotic activity screening of pearl and nacre (mother of pearl). J Ethnopharmacol 181:229–235

    CAS  PubMed  Google Scholar 

  37. Xu H, Huang K, Gao Q, Gao Z, Han XA (2001) Study on the prevention and treatment of myopia with nacre in chicks. Pharmacol Res 44:1–6

    CAS  PubMed  Google Scholar 

  38. Mangrulkar RS, Saint S, Chu S, Tierney LM (2002) What is the role of the clinical “pearl”? Am J Med 113:617–624

    PubMed  Google Scholar 

  39. Rousseau M, Pereira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produced earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B 135:1–7

    PubMed  Google Scholar 

  40. Brion A, Zhang G, Dossot M, Moby V, Dumas D, Hupont S, Piet MH, Bianchi A, Mainard D, Galois L, Gillet P, Rousseau M (2015) Nacre extract restores the mineralization capacity of subchondral osteoarthritis osteoblasts. J Struct Biol 192:500–509

    CAS  PubMed  Google Scholar 

  41. Atlan G, Delattre O, Berland S, LeFaou A, Nabias GD (1999) Interface between bone and nacre implants in sheep. Biomaterials 20:1017–1022

    CAS  PubMed  Google Scholar 

  42. Westbroek P, Marin F (1998) Marriage of bone and nacre. Nature 392:861–862

    CAS  PubMed  Google Scholar 

  43. Atlan G, Balmain N, Berland S, Vidal B, Lopez E (1997) Reconstruction of human maxillary defects with nacre powder: Histological evidence for bone regeneration. C R Acad Sci III Sci Vie 320:253–258

    CAS  Google Scholar 

  44. Lee K, Kim H, Kim JM, Chung YH, Lee TY, Lim H, Lim JH, Kim T, Bae JS, Woo CH, Kim KJ, Jeong D (2012) Nacre-driven water-soluble factors promote wound healing of deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol Biol Rep 39:3211–3218

    CAS  PubMed  Google Scholar 

  45. Lopez E, Le Faou A, Borzeix S, Berland S (2000) Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl). Tissue Cell 32:95–101

    CAS  PubMed  Google Scholar 

  46. Chen X, Peng LH, Chee SS, Shan YH, Liang WQ, Gao JQ (2019) Nanoscaled pearl powder accelerates wound repair and regeneration in vitro and in vivo. Drug Deve Ind Pharm 45:1009–1016

    CAS  Google Scholar 

  47. Chiu HF, Hsiao SC, Lu YY, Han YC, Shen YC, Venkatakrishnan K, Wang CK (2018) Efficacy of protein rich pearl powder on antioxidant status in a randomized placebo-controlled trial. J Food Drug Anal 26:309–317

    CAS  PubMed  Google Scholar 

  48. Hasegawa Y, Inoue T, Kawaminami S, Fujita M (2016) Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity. Asian Pac J Trop Med 9:662–667

    CAS  PubMed  Google Scholar 

  49. Fuji T, Inoue T, Hasegawa Y (2018) Nacre extract prevents scopolamine-induced memory deficits in rodents. Asian Pac J Trop Med 11:202–208

    CAS  Google Scholar 

  50. Yamagami H, Fuji T, Wako M, Hasegawa Y (2021) Sulfated polysaccharide isolated from the nacre of pearl oyster improves scopolamine-induced memory impairment. Antioxidants (Basel) 10:505

    CAS  Google Scholar 

  51. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  52. Hidalgo GI, Almajano MP, Fruits R (2017) Red Fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 6:7

    PubMed Central  Google Scholar 

  53. Ellman GL, Courtney KD, Andres jr V, Feather-stone RM, (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  Google Scholar 

  54. Kaldun JC, Sprecher SG (2019) Initiated by CREB: Resolving gene regulatory programs in learning and memory. BioEssays 41:1900045

    Google Scholar 

  55. Guglielmotto M, Manassero G, Vasciaveo V, Venezia M, Tabaton M, Tamagno E (2020) Estrogens inhibit amyloid-β-mediated paired helical filament-like conformation of tau through antioxidant activity and miRNA 218 regulation in hTau mice. J Alzheimers Dis 77:1339–1351

    CAS  PubMed  Google Scholar 

  56. Hasan N, Zameer S, Najmi AK, Parvez S, Yar MS, Akhtar M (2021) Roflumilast and tadalafil improve learning and memory deficits in intracerebroventricular Aβ1–42 rat model of Alzheimer’s disease through modulations of hippocampal cAMP/cGMP/BDNF signaling pathway. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00264-w

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hanger DP, Betts JC, Loviny TL, Blackstock WP, Anderto BH (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry. J Neurochem 71:2465–2476

    CAS  PubMed  Google Scholar 

  58. An FM, Liu Z, Xuan XR, Liu QS, Wei CX (2021) Sanweidoukou decoction, a Chinese herbal formula, ameliorates β-amyloid protein-induced neuronal insult via modulating MAPK/NF-κB signaling pathways: Studies in vivo and in vitro. J Ethnopharmacol 273:114002

    CAS  PubMed  Google Scholar 

  59. Kasza A, Penka B, Frank Z, Bozso Z, Szegedi V, Hunya A, Nemeth K, Kozma G, Fulop L (2017) Adminitration of well-characterized b-amyloid 1–42 oligomers induce dysfunction in spatial memory. Molecules 22:2007

    PubMed Central  Google Scholar 

  60. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    CAS  PubMed  Google Scholar 

  61. Tönnies E, Trushina E (2017) Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121

    PubMed  PubMed Central  Google Scholar 

  62. Postu PA, Sadiki FZ, El Idrissi ME, Cioanca O, Trifan A, Hancianu M, Hritcu L (2019) Pinus halepensis essential oil attenuates the toxic Alzheimer’s amyloid beta (1–42)-induced memory impairment and oxidative stress in the rat hippocampus. Biomed Pharmacother 112:108673

    CAS  PubMed  Google Scholar 

  63. Hallam RD (2021) Bolstered neuronal antioxidant response may confer resistance to development of dementia in individuals with Alzheimer’s neuropathology by ameliorating amyloid-β-induced oxidative stress. J Neurosci 21:6187–6189

    Google Scholar 

  64. Ashourpour F, Jafari A, Babaei P (2021) Chronic administration of Tat-GluR23Y ameliorates cognitive dysfunction targeting CREB signaling in rats with amyloid beta neurotoxicity. Metab Brain Dis 36:701–709

    CAS  PubMed  Google Scholar 

  65. Khan MZ, Zhuang X, He L (2016) GPR40 receptor activation leads to CREB phosphorylation and improves cognitive performance in an Alzheimer’s disease mouse model. Neurobiol Learn Mem 131:46–55

    CAS  PubMed  Google Scholar 

  66. Chen QS, Wei WZ, Shimahara T, Xie CW (2002) Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol Learn Memory 77:354–371

    CAS  Google Scholar 

  67. Yun SH, Gamkrelidze G, Stine WB, Sullivan PM, Pasternak JF, LaDu MJ, Trommer BL (2006) Amyloid-beta1–42 reduces neuronal excitability in mouse dentate gyrus. Neurosci Lett 403:162–165

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    CAS  PubMed  Google Scholar 

  69. Li X, Marshall PR, Leighton LJ, Zajaczkowski EL, Wang Z, Madugalle SU, Yin J, Bredy TW, Wei W (2019) The DNA repair-associated protein Gadd45γ regulates the temporal coding of immediate early gene expression within the prelimbic prefrontal cortex and is required for the consolidation of associative fear memory. J Neurosci 39:970–983

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV (2018) Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 12:79

    PubMed  PubMed Central  Google Scholar 

  71. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol Neurodegener 6:60

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Murphy K, Llewellyn K, Wakser S, Pontasch J, Samanich N, Flemer M, Hensley K, Kim DS, Park J (2018) Mini-GAGR, an intranasally applied polysaccharide, activates the neuronal Nrf2-mediated antioxidant defense system. J Biol Chem 293:18242–18269

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu L, Li R, Jiao S, Wei J, Yan Y, Wang ZA, Li J, Du Y (2020) Blood-brain Barrier Permeable chitosan Oligosaccharides Interfere with β-amyloid Aggregation and Alleviate β-amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of PolymerizationDependent Manner. Mar Drugs 18:488

    CAS  PubMed Central  Google Scholar 

  74. Biase ED, Lunghi G, Maggioni M, Fazzari M, Pomè DY, Loberto N, Ciampa MG, Fato P, Mauri L, Sevin E, Gosselet F, Sonnino S, Chiricozzi E (2020) GM1 oligosaccharide crosses the human blood-brain Barrier in vitro by a paracellular route. Int J Mol Sci 21:2858

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Hasegawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 20497 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yotsuya, Y., Hasegawa, Y. Nacre extract from pearl oyster attenuates amyloid beta-induced memory impairment. J Nat Med 76, 419–434 (2022). https://doi.org/10.1007/s11418-021-01598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01598-8

Keywords

Navigation