Skip to main content

Advertisement

Log in

Magnolol upregulates CHRM1 to attenuate Amyloid-β-triggered neuronal injury through regulating the cAMP/PKA/CREB pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a common neurodegenerative disease characterized by neuronal degeneration and hyperphosphorylated Tau. Magnolol is an active component isolated from Magnolia officinalis with potential neuroprotection activity. However, the function and mechanism of magnolol in AD progression is largely uncertain. In present study, the biomarkers related to AD and magnolol were predicted by bioinformatics analyses. The key biomarker levels were predicted by GSE5281 and GSE36980 using AlzData. Cell viability was detected by CCK-8 assay. mRNA and protein levels were examined by qRT-PCR and western blotting assays. Cell apoptosis was investigated by caspase-3 activity and flow cytometry analyses. The cAMP/PKA/CREB signaling was evaluated by ELISA and western blotting analyses. The results showed that CHRM1 was a key biomarker for magnolol against AD progression. Magnolol attenuated Aβ-induced viability inhibition, Tau hyperphosphorylation and apoptosis in SH-SY5Y cells by upregulating CHRM1. In addition, the cAMP signaling might be a potential pathway of CHRM1 in AD. Magnolol contributed to activation of the cAMP/PKA/CREB pathway through enhancing CHRM1 level. Inactivation of the cAMP/PKA/CREB signaling reversed the suppressive effect of magnolol on Tau hyperphosphorylation and apoptosis in Aβ-treated SH-SY5Y cells. As a conclusion, magnolol mitigated Aβ-induced Tau hyperphosphorylation and neuron apoptosis by upregulating CHRM1 and activating the cAMP/PKA/CREB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data and material presented in this manuscript are available from the corresponding author on reasonable request.

References

  1. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70

    CAS  PubMed  Google Scholar 

  2. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C et al (2020) Potential human transmission of amyloid beta pathology: surveillance and risks. Lancet Neurol 19:872–878

    CAS  PubMed  Google Scholar 

  4. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98:813–880

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gulisano W, Maugeri D, Baltrons MA, Fa M, Amato A, Palmeri A et al (2018) Role of amyloid-beta and tau proteins in Alzheimer’s disease: confuting the amyloid cascade. J Alzheimers Dis 64:S611–S631

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen SY, Gao Y, Sun JY, Meng XL, Yang D, Fan LH et al (2020) Traditional Chinese medicine: role in reducing beta-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of Alzheimer’s disease. Front Pharmacol 11:497

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin Y, Li Y, Zeng Y, Tian B, Qu X, Yuan Q et al (2021) Pharmacology, toxicity, bioavailability, and formulation of magnolol: an update. Front Pharmacol 12:632767

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen CH, Hsu FT, Chen WL, Chen JH (2021) Induction of apoptosis, inhibition of MCL-1, and VEGF-a expression are associated with the anti-cancer efficacy of magnolol combined with regorafenib in hepatocellular carcinoma. Cancers (Basel) 13:2066

    Google Scholar 

  10. Liu CM, Chen SH, Liao YW, Yu CH, Yu CC, Hsieh PL (2021) Magnolol ameliorates the accumulation of reactive oxidative stress and inflammation in diabetic periodontitis. J Formos Med Assoc 120:1452

    CAS  PubMed  Google Scholar 

  11. Jin YC, Kim KJ, Kim YM, Ha YM, Kim HJ, Yun UJ et al (2008) Anti-apoptotic effect of magnolol in myocardial ischemia and reperfusion injury requires extracellular signal-regulated kinase1/2 pathways in rat in vivo. Exp Biol Med (Maywood) 233:1280–1288

    CAS  Google Scholar 

  12. Zhou F, Jiang Z, Yang B, Hu Z (2019) Magnolol exhibits anti-inflammatory and neuroprotective effects in a rat model of intracerebral haemorrhage. Brain Behav Immun 77:161–167

    CAS  PubMed  Google Scholar 

  13. Huang SY, Tai SH, Chang CC, Tu YF, Chang CH, Lee EJ (2018) Magnolol protects against ischemic-reperfusion brain damage following oxygen-glucose deprivation and transient focal cerebral ischemia. Int J Mol Med 41:2252–2262

    CAS  PubMed  Google Scholar 

  14. Weng CC, Chen ZA, Chao KT, Ee TW, Lin KJ, Chan MH et al (2017) Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson’s disease using in vivo 18F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging. PLoS ONE 12:e0173503

    PubMed  PubMed Central  Google Scholar 

  15. Xian YF, Qu C, Liu Y, Ip SP, Yuan QJ, Yang W et al (2020) Magnolol ameliorates behavioral impairments and neuropathology in a transgenic mouse model of Alzheimer’s disease. Oxid Med Cell Longev 2020:5920476

    PubMed  PubMed Central  Google Scholar 

  16. Pala S, Atilgan R, Kuloglu T, Yalcin E, Kaya N, Etem E (2021) The decrease in hippocampal transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) is associated with memory loss in a surgical menopause rat model. Arch Med Sci 17:228–235

    CAS  PubMed  Google Scholar 

  17. Lee J, Hwang YJ, Shin JY, Lee WC, Wie J, Kim KY et al (2013) Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca(2+) signaling in Huntington’s disease. Acta Neuropathol 125:727–739

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Scarr E, Craig JM, Cairns MJ, Seo MS, Galati JC, Beveridge NJ et al (2013) Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl Psychiatry 3:e230

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu S, He C, Liao Y, Liu H, Mao W, Shen Z (2020) Enhancing and complementary mechanisms of synergistic action of Acori Tatarinowii Rhizoma and Codonopsis Radix for Alzheimer’s disease based on systems pharmacology. Evid Based Complement Alternat Med 2020:6317230

    PubMed  PubMed Central  Google Scholar 

  20. Feng H, Wang C, He W, Wu X, Li S, Zeng Z et al (2019) Roflumilast ameliorates cognitive impairment in APP/PS1 mice via cAMP/CREB/BDNF signaling and anti-neuroinflammatory effects. Metab Brain Dis 34:583–591

    CAS  PubMed  Google Scholar 

  21. Bae HJ, Sowndhararajan K, Park HB, Kim SY, Kim S, Kim DH et al (2019) Danshensu attenuates scopolamine and amyloid-beta-induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochem Int 131:104537

    CAS  PubMed  Google Scholar 

  22. Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48:D845–D855

    CAS  PubMed  Google Scholar 

  23. Smith JR, Hayman GT, Wang SJ, Laulederkind SJF, Hoffman MJ, Kaldunski ML et al (2020) The year of the rat: the rat genome database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res 48:D731–D742

    CAS  PubMed  Google Scholar 

  24. Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47:W357–W364

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J et al (2021) HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 49:D1197–D1206

    CAS  PubMed  Google Scholar 

  26. Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H et al (2019) SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res 47:D1110–D1117

    PubMed  Google Scholar 

  27. Xu M, Zhang DF, Luo R, Wu Y, Zhou H, Kong LL et al (2018) A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease. Alzheimers Dement 14:215–229

    PubMed  Google Scholar 

  28. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    CAS  PubMed  Google Scholar 

  29. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Google Scholar 

  30. Bell M, Zempel H (2021) SH-SY5Y-derived neurons: a human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Rev Neurosci

  31. Zamani E, Parviz M, Roghani M, Hosseini M, Mohseni-Moghaddam P, Nikbakhtzadeh M (2020) Netrin-1 protects the SH-SY5Y cells against amyloid beta neurotoxicity through NF-kappaB/Nrf2 dependent mechanism. Mol Biol Rep 47:9271–9277

    CAS  PubMed  Google Scholar 

  32. Jahed FJ, Rahbarghazi R, Shafaei H, Rezabakhsh A, Karimipour M (2021) Application of neurotrophic factor-secreting cells (astrocyte - Like cells) in the in-vitro Alzheimer’s disease-like pathology on the human neuroblastoma cells. Brain Res Bull 172:180–189

    CAS  PubMed  Google Scholar 

  33. Silvestro S, Chiricosta L, Gugliandolo A, Iori R, Rollin P, Perenzoni D et al (2021) The Moringin/alpha-CD pretreatment induces neuroprotection in an in vitro model of Alzheimer’s disease: a transcriptomic study. Curr Issues Mol Biol 43:197–214

    PubMed  Google Scholar 

  34. Knopman DS, Amieva H, Petersen RC, Chetelat G, Holtzman DM, Hyman BT et al (2021) Alzheimer disease. Nat Rev Dis Primers 7:33

    PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Chen Z, Huang X, Shi W, Zhang R, Chen M et al (2019) Insights on the multifunctional activities of magnolol. Biomed Res Int 2019:1847130

    PubMed  PubMed Central  Google Scholar 

  36. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29:613–627

    CAS  PubMed  Google Scholar 

  37. Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B (2020) Role of Tau protein in Alzheimer’s disease: the prime pathological player. Int J Biol Macromol 163:1599–1617

    CAS  PubMed  Google Scholar 

  38. Subramaniam S (2019) Selective neuronal death in neurodegenerative diseases: the ongoing mystery. Yale J Biol Med 92:695–705

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Samandari-Bahraseman MR, Elyasi L (2021) Apelin-13 protects human neuroblastoma SH-SY5Y cells against amyloid-beta induced neurotoxicity: Involvement of anti oxidant and anti apoptotic properties. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2020-0294

    Article  PubMed  Google Scholar 

  40. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Yap JKY et al (2021) Piper sarmentosum roxb attenuates beta amyloid (Abeta)-induced neurotoxicity via the inhibition of amyloidogenesis and tau hyperphosphorylation in SH-SY5Y cells. Curr Alzheimer Res 18:80

    CAS  Google Scholar 

  41. Xie Z, Zhao J, Wang H, Jiang Y, Yang Q, Fu Y et al (2020) Magnolol alleviates Alzheimer’s disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-gamma. Biomed Pharmacother 124:109886

    CAS  PubMed  Google Scholar 

  42. Dong L, Zhou S, Yang X, Chen Q, He Y, Huang W (2013) Magnolol protects against oxidative stress-mediated neural cell damage by modulating mitochondrial dysfunction and PI3K/Akt signaling. J Mol Neurosci 50:469–481

    CAS  PubMed  Google Scholar 

  43. Kim DJ, Kim YS (2016) Magnolol protects against trimethyltin-induced neuronal damage and glial activation in vitro and in vivo. Neurotoxicology 53:173–185

    CAS  PubMed  Google Scholar 

  44. Kou DQ, Jiang YL, Qin JH, Huang YH (2017) Magnolol attenuates the inflammation and apoptosis through the activation of SIRT1 in experimental stroke rats. Pharmacol Rep 69:642–647

    CAS  PubMed  Google Scholar 

  45. Sharma VK, Singh TG (2020) CREB: a multifaceted target for Alzheimer’s disease. Curr Alzheimer Res 17:1280–1293

    PubMed  Google Scholar 

  46. Gong Y, Chen J, Jin Y, Wang C, Zheng M, He L (2020) GW9508 ameliorates cognitive impairment via the cAMP-CREB and JNK pathways in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology 164:107899

    CAS  PubMed  Google Scholar 

  47. Chen Q, Ma H, Guo X, Liu J, Gui T, Gai Z (2019) Farnesoid X receptor (FXR) aggravates amyloid-beta-triggered apoptosis by modulating the cAMP-response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway in vitro. Med Sci Monit 25:9335–9345

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu H, Jin X, Yin X, Jin N, Liu F, Qian W (2015) PKA-CREB signaling suppresses tau transcription. J Alzheimers Dis 46:239–248

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Ms. Gemin Zhu, Yuan Fang, Xiaoli Cui, Ruihua Jia, and Xiaogang Kang, who have helped me during the writing, design, and experiment performance of this thesis.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GZ and YF designed and performed most of the experiments, GZ wrote the manuscript. XC and RJ involved in the performance of this experiment, XK and RZ made contributions to the study design and data analysis,

Corresponding authors

Correspondence to Xiaogang Kang or Rui Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Fang, Y., Cui, X. et al. Magnolol upregulates CHRM1 to attenuate Amyloid-β-triggered neuronal injury through regulating the cAMP/PKA/CREB pathway. J Nat Med 76, 188–199 (2022). https://doi.org/10.1007/s11418-021-01574-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01574-2

Keywords

Navigation