Skip to main content

Advertisement

Log in

Camalexin, an indole phytoalexin, inhibits cell proliferation, migration, and mammosphere formation in breast cancer cells via the aryl hydrocarbon receptor

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Breast cancer is the most commonly diagnosed cancer among women worldwide. Despite a variety of drugs available for the treatment of patients with breast cancer, drug resistance remains a significant clinical problem. Therefore, there is an urgent need to develop drugs with new mechanisms of action. Camalexin is the main indole phytoalexin in Arabidopsis thaliana and other crucifers. Camalexin inhibits the proliferation of various cancer cells. However, the mechanism by which camalexin inhibits cell proliferation remains unclear. In this study, we found that camalexin inhibited cell proliferation and migration of breast cancer cell lines. Furthermore, camalexin also suppressed breast cancer stem cell-derived mammosphere formation. We previously reported that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) agonist suppresses mammosphere formation. Several compounds with indole structures are known to act as AhR agonists. Therefore, we hypothesized that the inhibition of mammosphere formation by camalexin may involve AhR activation. We found that camalexin increased the nuclear translocation of AhR, AhR-mediated transcriptional activation, and expression of AhR target genes. In addition, camalexin suppressed mammosphere formation in AhR-expressing breast cancer cells more than in the breast cancer cells that lacked AhR expression. Taken together, the data demonstrate that camalexin is a novel AhR agonist and that the inhibition of cell proliferation, migration, and mammosphere formation by camalexin involves the activation of AhR. Our findings suggest that camalexin, an AhR agonist, may be a novel therapeutic agent for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Costa B, Amorim I, Gärtner F, Vale N (2020) Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 151:105401. https://doi.org/10.1016/j.ejps.2020.105401

    Article  CAS  PubMed  Google Scholar 

  3. Browne LM, Conn KL, Ayert WA, Tewari JP (1991) The camalexins: New phytoalexins produced in the leaves of Camelina sativa (cruciferae). Tetrahedron 47:3909–3914. https://doi.org/10.1016/S0040-4020(01)86431-0

    Article  CAS  Google Scholar 

  4. Glawischnig E (2007) Camalexin. Phytochemistry 68:401–406. https://doi.org/10.1016/j.phytochem.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Mezencev R, Updegrove T, Kutschy P et al (2011) Camalexin induces apoptosis in T-leukemia Jurkat cells by increased concentration of reactive oxygen species and activation of caspase-8 and caspase-9. J Nat Med 65:488–499. https://doi.org/10.1007/s11418-011-0526-x

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Wang G, Wu W et al (2018) Camalexin induces apoptosis via the ROS-ER stress-mitochondrial apoptosis pathway in AML cells. Oxid Med Cell Longev. https://doi.org/10.1155/2018/7426950

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith BA, Neal CL, Chetram M et al (2013) The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. J Nat Med 67:607–618. https://doi.org/10.1007/s11418-012-0722-3

    Article  CAS  PubMed  Google Scholar 

  8. Pilatova M, Ivanova L, Kutschy P et al (2013) In vitro toxicity of camalexin derivatives in human cancer and non-cancer cells. Toxicol Vitr 27:939–944. https://doi.org/10.1016/j.tiv.2013.01.006

    Article  CAS  Google Scholar 

  9. Kawajiri K, Fujii-Kuriyama Y (2017) The aryl hydrocarbon receptor: a multifunctional chemical sensor for host defense and homeostatic maintenance. Exp Anim 66:75–89. https://doi.org/10.1538/expanim.16-0092

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita N, Saito N, Zhao S et al (2018) Heregulin-induced cell migration is promoted by aryl hydrocarbon receptor in HER2-overexpressing breast cancer cells. Exp Cell Res 366:34–40. https://doi.org/10.1016/j.yexcr.2018.02.033

    Article  CAS  PubMed  Google Scholar 

  11. Mimura J, Yamashita K, Nakamura K et al (2003) Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2:645–654. https://doi.org/10.1046/j.1365-2443.1997.1490345.x

    Article  Google Scholar 

  12. Shimizu Y, Nakatsuru Y, Ichinose M et al (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci 97:779–782. https://doi.org/10.1073/pnas.97.2.779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamada T, Horimoto H, Kameyama T et al (2016) Constitutive aryl hydrocarbon receptor signaling constrains type I interferon–mediated antiviral innate defense. Nat Immunol 17:687–694. https://doi.org/10.1038/ni.3422

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt JV, Su GH, Reddy JK et al (1996) Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci 93:6731–6736. https://doi.org/10.1073/pnas.93.13.6731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawajiri K, Kobayashi Y, Ohtake F et al (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci 106:13481–13486. https://doi.org/10.1073/pnas.0902132106

    Article  PubMed  PubMed Central  Google Scholar 

  16. Saito N, Kanno Y, Yamashita N et al (2021) The differential selectivity of aryl hydrocarbon receptor (AHR) agonists towards AHR-dependent suppression of mammosphere formation and gene transcription in human breast cancer cells. Biol Pharm Bull 44:571–578. https://doi.org/10.1248/bpb.b20-00961

    Article  CAS  PubMed  Google Scholar 

  17. Zhao S, Ohara S, Kanno Y et al (2013) HER2 overexpression-mediated inflammatory signaling enhances mammosphere formation through up-regulation of aryl hydrocarbon receptor transcription. Cancer Lett 330:41–48. https://doi.org/10.1016/j.canlet.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  18. Zhao S, Kanno Y, Nakayama M et al (2012) Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells. Cancer Lett 317:192–198. https://doi.org/10.1016/j.canlet.2011.11.025

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita N, Yoshizuka A, Kase A et al (2021) Activation of the aryl hydrocarbon receptor by 3-methylcholanthrene, but not by indirubin, suppresses mammosphere formation via downregulation of CDC20 expression in breast cancer cells. Biochem Biophys Res Commun 570:131–136. https://doi.org/10.1016/j.bbrc.2021.07.047

    Article  CAS  PubMed  Google Scholar 

  20. Cheng J, Li W, Kang B et al (2015) Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat Commun 6:7209. https://doi.org/10.1038/ncomms8209

    Article  PubMed  Google Scholar 

  21. Ikuta T, Kurosumi M, Yatsuoka T, Nishimura Y (2016) Tissue distribution of aryl hydrocarbon receptor in the intestine: implication of putative roles in tumor suppression. Exp Cell Res 343:126–134. https://doi.org/10.1016/j.yexcr.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  22. Klinge CM, Piell KM, Tooley CS, Rouchka EC (2019) HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 9:9430. https://doi.org/10.1038/s41598-019-45636-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamashita N, Kanno Y, Yoshikawa M et al (2021) Polycyclic aromatic hydrocarbons induce CYP3A5 gene expression via aryl hydrocarbon receptor in HepG2 cells. J Toxicol Sci 46:25–29. https://doi.org/10.2131/jts.46.25

    Article  CAS  PubMed  Google Scholar 

  24. Sanada N, Gotoh Y, Shimazawa R et al (2009) Repression of activated aryl hydrocarbon receptor-induced transcriptional activation by 5α-dihydrotestosterone in human prostate cancer LNCaP and human breast cancer T47D cells. J Pharmacol Sci 109:380–387. https://doi.org/10.1254/jphs.08328FP

    Article  CAS  PubMed  Google Scholar 

  25. Saygin C, Matei D, Majeti R et al (2019) Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24:25–40. https://doi.org/10.1016/j.stem.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  26. Xie G, Zhan J, Tian Y et al (2012) Mammosphere cells from high-passage MCF7 cell line show variable loss of tumorigenicity and radioresistance. Cancer Lett 316:53–61. https://doi.org/10.1016/j.canlet.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  27. Kuang X, Li W, Kanno Y et al (2016) ent-Atisane diterpenoids from Euphorbia fischeriana inhibit mammosphere formation in MCF-7 cells. J Nat Med 70:120–126. https://doi.org/10.1007/s11418-015-0940-6

    Article  CAS  PubMed  Google Scholar 

  28. Prudhomme GJ, Glinka Y, Toulina A et al (2010) Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS ONE 5:e13831. https://doi.org/10.1371/journal.pone.0013831

    Article  CAS  Google Scholar 

  29. Zhang X-H, Tee LY, Wang X-G et al (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264. https://doi.org/10.1038/mtna.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamashita N, Kanno Y, Saito N et al (2019) Aryl hydrocarbon receptor counteracts pharmacological efficacy of doxorubicin via enhanced AKR1C3 expression in triple negative breast cancer cells. Biochem Biophys Res Commun 516:693–698. https://doi.org/10.1016/j.bbrc.2019.06.119

    Article  CAS  PubMed  Google Scholar 

  31. Stanford EA, Wang Z, Novikov O et al (2016) The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol 14:20. https://doi.org/10.1186/s12915-016-0240-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vogel CFA, Lazennec G, Kado SY et al (2021) Targeting the aryl hydrocarbon receptor signaling pathway in breast cancer development. Front Immunol 12:1–15. https://doi.org/10.3389/fimmu.2021.625346

    Article  CAS  Google Scholar 

  33. Baker JR, Sakoff JA, McCluskey A (2020) The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 40:972–1001. https://doi.org/10.1002/med.21645

    Article  CAS  PubMed  Google Scholar 

  34. McLean LS, Watkins CN, Campbell P et al (2015) Aryl hydrocarbon receptor ligand 5F 203 induces oxidative stress that triggers DNA damage in human breast cancer cells. Chem Res Toxicol 28:855–871. https://doi.org/10.1021/tx500485v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fukasawa K, Kagaya S, Maruyama S et al (2015) A novel compound, NK150460, exhibits selective antitumor activity against breast cancer cell lines through activation of aryl hydrocarbon receptor. Mol Cancer Ther 14:343–354. https://doi.org/10.1158/1535-7163.MCT-14-0158

    Article  CAS  PubMed  Google Scholar 

  36. Stark K, Burger A, Wu J et al (2013) Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS ONE 8:e74525. https://doi.org/10.1371/journal.pone.0074525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McLean L, Soto U, Agama K et al (2008) Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J cancer 122:1665–1674. https://doi.org/10.1002/ijc.23244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant numbers 19K23811 and 21K15307 (to N.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Yamashita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 22766 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, N., Taga, C., Ozawa, M. et al. Camalexin, an indole phytoalexin, inhibits cell proliferation, migration, and mammosphere formation in breast cancer cells via the aryl hydrocarbon receptor. J Nat Med 76, 110–118 (2022). https://doi.org/10.1007/s11418-021-01560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01560-8

Keywords

Navigation