Skip to main content
Log in

Brazilian propolis (AF-08) inhibits collagen-induced platelet aggregation without affecting blood coagulation

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Brazilian propolis (AF-08) is a dietary supplement containing a variety of flavonoids. It is used worldwide as a folk medicine. Flavonoids and a diet of fruits and vegetables containing them have been shown to reduce the risk of cardiovascular diseases (CVDs). Most of CVDs are caused by arterial thrombus formation. A thrombus is formed by the interaction between adhesion and aggregation of platelets to damaged blood vessels and blood coagulation consisting of extrisic and intrinsic pathways. Platelet aggregation and blood coagulation are closely linked to thrombosis. Therefore, we evaluated the effectiveness of AF-08 or its component flavonoids against thrombosis by examining their inhibition of platelet aggregation and blood coagulation. Human platelet-rich plasma was incubated with serial dilutions of AF-08 for 10 min to assess its inhibitory effect on platelet aggregation caused by collagen. The inhibitory effect of AF-08 on blood coagulation was evaluated by the prothrombin time (PT) and activated partial thromboplastin time (APTT), which reflect the coagulation function of extrinsic and intrinsic pathways, respectively. AF-08 significantly inhibited collagen-induced platelet aggregation but not PT and APTT, indicating that AF-08 inhibited platelet aggregation but not blood coagulation. Among three flavonoids contained in AF-08, apigenin and chrysin obviously inhibited platelet aggregation but the inhibitory effect of kaempferol was less effective. The three flavonoids did not affect PT and APTT. The inhibitory activity of AF-08 on human platelet aggregation without affecting blood coagulation was suggested to be partially due to apigenin and chrysin. AF-08 may be effective in suppressing platelet-based arterial thrombus formation and reducing the risk of CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363

    Article  CAS  PubMed  Google Scholar 

  2. Bueno-Silva B, Franchin M, Alves CF, Denny C, Colon DF, Cunha TM, Alencar SM, Napimoga MH, Rosalen PL (2016) Main pathways of action of Brazilian red propolis on the modulation of neutrophils migration in the inflammatory process. Phytomedicine 23:1583–1590

    Article  CAS  PubMed  Google Scholar 

  3. Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64:235–240

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu T, Hino A, Tsutsumi A, Park YK, Watanabe W, Kurokawa M (2008) Anti-influenza virus activity of propolis in vitro and its efficacy against influenza infection in mice. Antivir Chem Chemother 19:7–13

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu T, Takeshita Y, Takamori Y, Kai H, Sawamura R, Yoshida H, Watanabe W, Tsutsumi A, Park YK, Yasukawa K, Matsuno K, Shiraki K, Kurokawa M (2011) Efficacy of Brazilian propolis against Herpes simplex virus type 1 infection in mice and their modes of antiherpetic efficacies. Evid based complement Alternat Med 2011:976196

    Article  PubMed  PubMed Central  Google Scholar 

  6. Takeshita T, Watanabe W, Toyama S, Hayashi Y, Honda S, Sakamoto S, Matsuoka S, Yoshida H, Takeda S, Hidaka M, Tsutsumi S, Yasukawa K, Park YK, Kurokawa M (2013) Effect of Brazilian propolis on exacerbation of respiratory syncytial virus infection in mice exposed to tetrabromobisphenol a, a brominated flame retardant. Evid Based Complement Alternat Med 2013:698206

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kai H, Obuchi M, Yoshida H, Watanabe W, Tsutsumi S, Park YK, Matsuno K, Yasukawa K, Kurokawa M (2014) In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J Funct Foods 8:214–223

    Article  CAS  Google Scholar 

  8. Toh JY, Tan VM, Lim PC, Lim ST, Chong MF (2013) Flavonoids from fruit and vegetables: a focus on cardiovascular risk factors. Curr Atheroscler Rep 15:368

    Article  CAS  PubMed  Google Scholar 

  9. Yu D, Zhang X, Gao YT, Li H, Yang G, Huang J, Zheng W, Xiang YB, Shu XO (2014) Fruit and vegetable intake and risk of CHD: results from prospective cohort studies of Chinese adults in Shanghai. Br J Nutr 111:353–362

    Article  CAS  PubMed  Google Scholar 

  10. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA, Jacobs DR Jr (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909

    Article  CAS  PubMed  Google Scholar 

  11. Knekt P, Jarvinen R, Reunanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH (2013) New fundamentals in hemostasis. Physiol Rev 93:327–358

    Article  CAS  PubMed  Google Scholar 

  13. Nuyttens BP, Thijs T, Deckmyn H, Broos K (2011) Platelet adhesion to collagen. Thromb Res 127:S26–S29

    Article  CAS  PubMed  Google Scholar 

  14. George JN (2000) Platelets. Lancet 355:1531–1539

    Article  CAS  PubMed  Google Scholar 

  15. Heemskerk JW, Kuijpers MJ, Munnix IC, Siljander PR (2005) Platelet collagen receptors and coagulation. A characteristic platelet response as possible target for antithrombotic treatment. Trends Cardiovasc Med 15:86–92

    Article  CAS  PubMed  Google Scholar 

  16. Mackman N, Tilley RE, Key NS (2007) Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27:1687–1693

    Article  CAS  PubMed  Google Scholar 

  17. Gailani D, Renne T (2007) The intrinsic pathway of coagulation: a target for treating thromboembolic disease? J Thromb Haemost 5:1106–1112

    Article  CAS  PubMed  Google Scholar 

  18. Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, Li C, Sun D, Verhamme IM, Emsley J, Gailani D (2018) An update on factor XI structure and function. Thromb Res 161:94–105

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman M, Monroe DM, Oliver JA, Roberts HR (1995) Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood 86:1794–1801

    Article  CAS  PubMed  Google Scholar 

  20. De Candia E (2012) Mechanisms of platelet activation by thrombin: a short history. Thromb Res 129:250–256

    Article  PubMed  CAS  Google Scholar 

  21. Mann KG (1999) Biochemistry and physiology of blood coagulation. Thromb Haemost 82:165–174

    Article  CAS  PubMed  Google Scholar 

  22. von dem Borne PA, Meijers JC, Bouma BN (1995) Feedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis. Blood 86:3035–3042

    Article  Google Scholar 

  23. Monroe DM, Hoffman M, Roberts HR (2002) Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 22:1381–1389

    Article  CAS  PubMed  Google Scholar 

  24. van Dieijen G, Tans G, Rosing J, Hemker HC (1981) The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem 256:3433–3442

    Article  PubMed  Google Scholar 

  25. Rosing J, Tans G, Govers-Riemslag JW, Zwaal RF, Hemker HC (1980) The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 255:274–283

    Article  CAS  PubMed  Google Scholar 

  26. Jackson SP (2011) Arterial thrombosis–insidious, unpredictable and deadly. Nat Med 17:1423–1436

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita A, Nishihira K, Kitazawa T, Yoshihashi K, Soeda T, Esaki K, Imamura T, Hattori K, Asada Y (2006) Factor XI contributes to thrombus propagation on injured neointima of the rabbit iliac artery. J Thromb Haemost 4:1496–1501

    Article  CAS  PubMed  Google Scholar 

  28. Vricella LK, Louis JM, Chien E, Mercer BM (2015) Blood volume determination in obese and normal-weight gravidas: the hydroxyethyl starch method. Am J Obstet Gynecol 213:408.e1-408.e6

    Article  Google Scholar 

  29. Kron J, Schneditz D, Leimbach T, Aign S, Kron S (2014) A simple and feasible method to determine absolute blood volume in hemodialysis patients in clinical practice. Blood Purif 38:180–187

    Article  CAS  PubMed  Google Scholar 

  30. Sugita C, Yamashita A, Matsuura Y, Iwakiri T, Okuyama N, Matsuda S, Matsumoto T, Inoue O, Harada A, Kitazawa T, Hattori K, Shima M, Asada Y (2013) Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor. Thromb Haemost 110:62–75

    Article  CAS  PubMed  Google Scholar 

  31. Khalil ML (2006) Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 7:22–31

    PubMed  Google Scholar 

  32. Inokuchi Y, Shimazawa M, Nakajima Y, Suemori S, Mishima S, Hara H (2006) Brazilian green propolis protects against retinal damage in vitro and in vivo. Evid Based Complement Alternat Med 3:71–77

    Article  PubMed  PubMed Central  Google Scholar 

  33. Park YK, Fukuda I, Ashida H, Nishiumi S, Guzman JP, Sato HH, Pastore GM (2004) Suppression of dioxin mediated aryl hydrocarbon receptor transformation by ethanolic extracts of propolis. Biosci Biotechnol Biochem 68:935–938

    Article  CAS  PubMed  Google Scholar 

  34. Bojic M, Antolic A, Tomicic M, Debeljak Z, Males Z (2018) Propolis ethanolic extracts reduce adenosine diphosphate induced platelet aggregation determined on whole blood. Nutr J 17:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang YX, Yang TT, Xia L, Zhang WF, Wang JF, Wu YP (2017) Inhibitory effect of propolis on platelet aggregation in vitro. J Healthc Eng 2017:3050895

    PubMed  PubMed Central  Google Scholar 

  36. Huang S, Zhang CP, Wang K, Li GQ, Hu FL (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE (2017) Thrombosis and platelets: an update. Eur Heart J 38:785–791

    CAS  PubMed  Google Scholar 

  38. Stein PD, Evans H (1967) An autopsy study of leg vein thrombosis. Circulation 35:671–681

    Article  CAS  PubMed  Google Scholar 

  39. Cheng J, Kondo K, Suzuki Y, Ikeda Y, Meng X, Umemura K (2003) Inhibitory effects of total flavones of Hippophae rhamnoides L on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sci 72:2263–2271

    Article  CAS  PubMed  Google Scholar 

  40. Mower RL, Landolfi R, Steiner M (1984) Inhibition in vitro of platelet aggregation and arachidonic acid metabolism by flavone. Biochem Pharmacol 33:357–363

    Article  CAS  PubMed  Google Scholar 

  41. Zhang P, Mak JC, Man RY, Leung SW (2019) Flavonoids reduces lipopolysaccharide-induced release of inflammatory mediators in human bronchial epithelial cells: structure-activity relationship. Eur J Pharmacol 865:172731

    Article  CAS  PubMed  Google Scholar 

  42. Cho HJ, Shon YH, Nam KS (2007) Ginkgolide C inhibits platelet aggregation in cAMP- and cGMP-dependent manner by activating MMP-9. Biol Pharm Bull 30:2340–2344

    Article  CAS  PubMed  Google Scholar 

  43. Choi JH, Park SE, Kim SJ, Kim S (2015) Kaempferol inhibits thrombosis and platelet activation. Biochimie 115:177–186

    Article  CAS  PubMed  Google Scholar 

  44. Osman HE, Maalej N, Shanmuganayagam D, Folts JD (1998) Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys. J Nutr 128:2307–2312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Shimoda, T. Kai, and Dr. K. Sato for their excellent technical assistances and K. Ono for editorial assistance. We also thank K. Sato, K. Miyaji, Y. Takahashi, and C. Nishida for their great assistance in some parts of the measurement of coagulation parameters. This study was supported by research grant from Kyushu University of Health and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Kurokawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugita, C., Yamashita, A., Tsutsumi, S. et al. Brazilian propolis (AF-08) inhibits collagen-induced platelet aggregation without affecting blood coagulation. J Nat Med 75, 975–984 (2021). https://doi.org/10.1007/s11418-021-01518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01518-w

Keywords

Navigation