Skip to main content
Log in

Anti-Vpr activities of sesqui- and diterpenoids from the roots and rhizomes of Kaempferia candida

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

New copaene-type and nerolidol-type sesquiterpenoids, 7-hydroxymustakone (1) and 15-hydroxynerolidol (2), and a 15-norlabdane diterpenoid, kaempcandiol (3), together with four known compounds (47) were isolated from the chloroform extract of Kaempferia candida roots and rhizomes. The structures of the new compounds 13 were elucidated based on 1D and 2D NMR and HRESIMS spectroscopic analyses. The extract of the K. candida roots and rhizomes and all isolated compounds 17 possessed HIV-1 viral protein R (Vpr) inhibitory activities on the TREx-HeLa-Vpr cell line at a 5 μM concentration, without detectable cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tristem M, Marshall C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J 11:3405–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rouzic EL, Benichou S (2005) The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hagiwara K, Murakami T, Xue G, Shimizu Y, Takeda E, Hashimoto Y, Honda K, Kondoh Y, Osada H, Tsunetsugu-Yokota Y, Aida Y (2010) Identification of a novel Vpr-binding compound that inhibits HIV-1 multiplication in macrophages by chemical array. Biochem Biophys Res Commun 403:40–45

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe B, Nishihara Y, Yamaguchi T, Koito A, Miyoshi H, Kakeya H, Osada H (2006) Fumagillin suppresses HIV-1 infection of macrophages through the inhibition of Vpr activity. FEBS Lett 580:2598–2602

    Article  CAS  PubMed  Google Scholar 

  5. Larsen K (1962) Studies in Zingiberaceae III. On a new species of Kaempferia from Thailand and its relatives. Bot Tidsskr 58:191–203

    Google Scholar 

  6. Jenjittikul T, Larsen K (2000) Kaempferia candida Wall. (Zingiberaceae), a new record for Thailand. Thai For Bull (Bot) 28:45–49

    Google Scholar 

  7. Sirirugsa P (1992) Taxonomy of the genus Kaempferia (Zingiberaceae) in Thailand. Thai For Bull (Bot) 19:1–15

    Google Scholar 

  8. Techaprasan J, Klinbunga S, Ngamriabsakul C, Jenjittikul T (2010) Genetic variation of Kaempferia in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet Mol Res 9:1957–1973

    Article  CAS  PubMed  Google Scholar 

  9. Techaprasan J, Leong-Škorničková J (2011) Transfer of Kaempferia candida to curcuma (Zingiberaceae) based on morphological and molecular data. Nord J Bot 29:773–779

    Article  Google Scholar 

  10. Swapana N, Tominaga T, Elshamy AI, Ibrahim MA, Hegazy MEF, Singh CB, Suenaga M, Imagawa H, Noji M, Umeyama A (2018) Kaemgalangol A: unusual seco-isopimarane diterpenoid from aromatic ginger Kaempferia galanga. Fitoterapia 129:47–53

    Article  CAS  PubMed  Google Scholar 

  11. Win NN, Ito T, Aimaiti S, Kodama T, Imagawa H, Ngwe H, Asakawa Y, Abe I, Morita H (2015) Kaempulchraols I-O: New isopimarane diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their antiproliferative activity. Tetrahedron 71:4707–4713

    Article  CAS  Google Scholar 

  12. Chawengrum P, Boonsombat J, Kittakoop P, Mahidol C, Ruchirawat S, Thongnest S (2018) Cytotoxic and antimicrobial labdane and clerodane diterpenoids from Kaempferia elegans and Kaempferia pulchra. Phytochem Lett 24:140–144

    Article  CAS  Google Scholar 

  13. Hidaka M, Horikawa K, Akase T, Makihara H, Ogami T, Tomozawa H, Tsubata M, Ibuki A, Matsumoto Y (2017) Efficacy of Kaempferia parviflora in a mouse model of obesity-induced dermatopathy. J Nat Med 71:59–67

    Article  CAS  PubMed  Google Scholar 

  14. Boonsombat J, Mahidol C, Chawengrum P, Reuk-Ngam N, Chimnoi N, Techasakul S, Ruchirawat S, Thongnest S (2017) Roscotanes and roscoranes: oxygenated abietane and pimarane diterpenoids from Kaempferia roscoeana. Phytochemistry 143:36–44

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Tian S, Wang F, Li Z, Liu L, Yang X, Bao Y, Wu Y, Huang Y, Sun L (2018) Chemical composition and antibacterial activity of Kaempferia galanga essential oil. Int J Agric Biol 20:457–462

    Article  CAS  Google Scholar 

  16. Kochuthressia K, Britto SJ, Jaseentha M, Raphael R (2012) In vitro antimicrobial evaluation of Kaempferia galanga L. rhizome extract. Am J Biotechnol Mol Sci 2:1–5

    Article  Google Scholar 

  17. Yeap YSY, Kassim NK, Ng RC, Ee GCL, Saiful Yazan L, Musa KH (2017) Antioxidant properties of ginger (Kaempferia angustifolia Rosc.) and its chemical markers. Int J Food Prop 20:1158–1172

    Article  Google Scholar 

  18. Sahoo S, Parida R, Singh S, Padhy RN, Nayak S (2014) Evaluation of yield, quality and antioxidant activity of essential oil of in vitro propagated Kaempferia galanga Linn. J Acute Dis 3:124–130

    Article  Google Scholar 

  19. Kaewkroek K, Wattanapiromsakul C, Matsuda H, Nakamura S, Tewtrakul S (2017) Anti-inflammatory activity of compounds from Kaempferia marginate rhizomes. Songklanakarin J Sci Technol 39:91–99

    CAS  Google Scholar 

  20. Sematong T, Reutrakul V, Tuchinda P, Claeson P, Pongprayoon U, Nahar N (1996) Topical antiinflammatory activity of two pimarane diterpenes from Kaempferia pulchra. Phytother Res 10:534–535

    Article  Google Scholar 

  21. Umar MI, Asmawi MZ, Sadikun A, Majid AMSA, Al-Suede FSR, Hassan LEA, Altaf R, Ahamed MBK (2014) Ethyl-p-methoxycinnamate isolated from Kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions. Clinics (Sao Paulo) 69:134–144

    Article  Google Scholar 

  22. Tewtrakul S, Subhadhirasakul S, Karalai C, Ponglimanont C, Cheenpracha S (2009) Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata. Food Chem 115:534–538

    Article  CAS  Google Scholar 

  23. Sawasdee P, Sabphon C, Sitthiwongwanit D, Kokpol U (2009) Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytother Res 23:1792–1794

    Article  CAS  PubMed  Google Scholar 

  24. Azuma T, Kayano SI, Matsumura Y, Konishi Y, Tanaka Y, Kikuzaki H (2011) Antimutagenic and α-glucosidase inhibitory effects of constituents from Kaempferia parviflora. Food Chem 125:471–475

    Article  CAS  Google Scholar 

  25. Elshamy AI, Mohamed TA, Essa AF, Abd-ElGawad AM, Alqahtani AS, Shahat AA, Yoneyama T, Farrag ARH, Noji M, El-Seedi HR, Umeyama A, Paré PW, Hegazy MEF (2019) Recent advances in Kaempferia phytochemistry and biological activity: a comprehensive review. Nutrients 11:2396

    Article  CAS  PubMed Central  Google Scholar 

  26. Win NN, Ito T, Matsui T, Aimaiti S, Kodama T, Ngwe H, Okamoto Y, Tanaka M, Asakawa Y, Abe I, Morita H (2016) Isopimarane diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their Vpr inhibitory activity. Bioorg Med Chem Lett 26:1789–1793

    Article  CAS  PubMed  Google Scholar 

  27. Win NN, Ngwe H, Abe I, Morita H (2017) Naturally occurring Vpr inhibitors from medicinal plants of Myanmar. J Nat Med 71:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Win NN, Ito T, Win YY, Ngwe H, Kodama T, Abe I, Morita H (2016) Quassinoids: Viral protein R inhibitors from Picrasma javanica bark collected in Myanmar for HIV infection. Bioorg Med Chem Lett 26:4620–4624

    Article  CAS  PubMed  Google Scholar 

  29. Win NN, Kodama T, Lae KZW, Win YY, Ngwe H, Abe I, Morita H (2019) Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia 134:101–107

    Article  CAS  PubMed  Google Scholar 

  30. Woo S, Win NN, Oo WMN, Ngwe H, Ito T, Abe I, Morita H (2019) Viral protein R inhibitors from Swertia chirata of Myanmar. J Biosci Bioeng 128:445–449

    Article  CAS  PubMed  Google Scholar 

  31. Prema WCP, Kodama T, Nugroho AE, El-Desoky AH, Awouafack MD, Win YY, Ngwe H, Abe I, Morita H, Morita H (2020) Three new quassinoids isolated from the wood of Picrasma javanica and their anti-Vpr activities. J Nat Med 74:571–578

    Article  CAS  PubMed  Google Scholar 

  32. Prema KT, Wong CP, El-Desoky AH, Nyunt HHW, Ngwe H, Abe I, Morita H (2020) Anti-Vpr activities of homodrimane sesquiterpenoids and labdane diterpenoids from the Globba sherwoodiana rhizomes. Fitoterapia 146:104705

    Article  CAS  PubMed  Google Scholar 

  33. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  34. Kamata M, Wu RP, An DS, Saxe JP, Damoiseaux R, Phelps ME, Huang J, Chen ISY (2006) Cell-based chemical genetic screen identifies damnacanthal as an inhibitor of HIV-1 Vpr induced cell death. Biochem Biophys Res Commun 348:1101–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nyasse B, Ghogomu R, Sondengam TBL, Martin MT, Bodo B (1988) Mandassidione and other sesquiterpenic ketones from Cyperus articulates. Phytochemistry 27:3319–3321

    Article  CAS  Google Scholar 

  36. Umaru IJ, Umaru HA, Umaru KI (2019) Isolation and characterization of new compound and its antibacterial activities from stem-bark extract of Barringtonia asiatica. Ann Adv Biomed Sci 2:000140

    Google Scholar 

  37. Kim KH, Choi JW, Choi SU, Lee KR (2011) Cytotoxic sesquiterpenoid from the seeds of Amomum xanthioides. Nat Prod Sci 17:10–13

    CAS  Google Scholar 

  38. Blanc MC, Bradesi P, Casanova J (2005) Enantiomeric differentiation of acyclic terpenes by 13C NMR spectroscopy using a chiral lanthanide shift reagent. Magn Reson Chem 43:176–179

    Article  CAS  PubMed  Google Scholar 

  39. Sun S, Du GJ, Qi LW, Williams S, Wang KZ, Yuan CS (2010) Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.). J Ethnopharmacol 132:280–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morikawa T, Matsuda H, Sakamoto Y, Ueda K, Yoshikawa M (2002) New farnesane-type sesquiterpenes, hedychiols A and B 8,9-diacetate, and inhibitors of degranulation in RBL-2H3 cells from the rhizome of Hedychium coronarium. Chem Pharm Bull 50:1045–1049

    Article  CAS  Google Scholar 

  41. Vlad P, Souček M (1962) On terpenes. CXXXVII. Absolute configuration of nerolidol. Collect Czech Chem Commun 27:1726–1729

    Article  CAS  Google Scholar 

  42. Kimbu SF, Ngadjui B, Sondengam LB, Njimi TK, Connolly JD, Fakunle CO (1987) A new labdane diterpenoid from the seeds of Aframomum daniellii. J Nat Prod 50:230–231

    Article  CAS  Google Scholar 

  43. Torres FR, Pérez-Castorena AL, Arredondo L, Toscano RA, Nieto-Camacho A, Martínez M, Maldonado E (2019) Labdanes, Withanolides, and other constituents from Physalis nicandroides. J Nat Prod 82:2489–2500

    Article  CAS  PubMed  Google Scholar 

  44. Akiyama K, Kikuzaki H, Aoki T, Okuda A, Lajis NH, Nakatani N (2006) Terpenoids and a diarylheptanoid from Zingiber ottensii. J Nat Prod 69:1637–1640

    Article  CAS  PubMed  Google Scholar 

  45. Dong S, Li B, Dai W, Wang D, Qin Y, Zhang Y (2017) Sesqui- and diterpenoids from the radix of Curcuma aromatica. J Nat Prod 80:3093–3102

    Article  CAS  PubMed  Google Scholar 

  46. Xu J, Ji F, Kang J, Wang H, Li S, Jin DQ, Zhang Q, Sun H, Guo Y (2015) Absolute configurations and NO inhibitory activities of terpenoids from Curcuma longa. J Agric Food Chem 63:5805–5812

    Article  CAS  PubMed  Google Scholar 

  47. Sonwa MM, König WA (2001) Chemical study of essential oil of Cyperus rotundus. Phytochemistry 58:799–810

    Article  CAS  PubMed  Google Scholar 

  48. Adams RP (2012) Identification of essential oil compounds by gas chromatography/mass spectrometry, 4th edn. Allured Business Media, Carol Stream, p 629

    Google Scholar 

  49. Chen P, Wang PP, Jiao ZZ, Xiang L (2014) Sesquiterpenoids from the fruits of Alpinia oxyphylla and their anti-acetylcholinesterase activity. Helv Chim Acta 97:388–397

    Article  CAS  Google Scholar 

  50. Niebler J, Zhuravlova K, Minceva M, Buettner A (2016) Fragrant sesquiterpene ketones as trace constituents in frankincense volatile oil of Boswellia sacra. J Nat Prod 79:1160–1164

    Article  CAS  PubMed  Google Scholar 

  51. Braca A, Siciliano T, D’Arrigo M, Germanò MP (2008) Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79:123–125

    Article  CAS  PubMed  Google Scholar 

  52. Parreira NA, Magalhães LG, Morais DR, Caixeta SC, de Sousa JPB, Bastos JK, Cunha WR, Silva MLA, Nanayakkara NPD, Rodrigues V, da Silva Filho AA (2010) Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem Biodivers 7:993–1001

    Article  CAS  PubMed  Google Scholar 

  53. Marques AM, Barreto ALS, da R. Curvelo JA, Romanos MTV, de A. Soares RM, Kaplan MAC, (2011) Antileishmanial activity of nerolidol-rich essential oil from Piper claussenianum. Rev Bras Farmacogn 21:908–914

    Article  CAS  Google Scholar 

  54. Lima DKS, Ballico LJ, Lapa FR, Gonçalves HP, de Souza LM, Iacomini M, de Paula Werner MF, Baggio CH, Pereira IT, Silva LM, Facundo VA, Santos ARS (2012) Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents. J Ethnopharmacol 142:274–282

    Article  CAS  PubMed  Google Scholar 

  55. Simionatto E, Porto C, Dalcol II, da Silva UF, Morel AF (2005) Essential oil from Zanthoxylum hyemale. Planta Med 71:759–763

    Article  CAS  PubMed  Google Scholar 

  56. Matsuda H, Morikawa T, Sakamoto Y, Toguchida I, Yoshikawa M (2002) Labdane-type diterpenes with inhibitory effects on increase in vascular permeability and nitric oxide production from Hedychium coronarium. Bioorg Med Chem 10:2527–2534

    Article  CAS  PubMed  Google Scholar 

  57. Win NN, Ito T, Ngwe H, Win YY, Prema OY, Tanaka M, Asakawa Y, Abe I, Morita H (2017) Labdane diterpenoids from Curcuma amada rhizomes collected in Myanmar and their antiproliferative activities. Fitoterapia 122:34–39

    Article  CAS  PubMed  Google Scholar 

  58. Vardamides JC, Sielinou VT, Ndemangou B, Nkengfack AE, Fomum ZT, Poumale HMP, Laatsch H (2007) Diterpenoids from Turraeanthus mannii. Planta Med 73:491–495

    Article  CAS  PubMed  Google Scholar 

  59. Itokawa H, Yoshimoto S, Morita H (1988) Diterpenes from the rhizomes of Alpinia formosana. Phytochemistry 27:435–438

    Article  CAS  Google Scholar 

  60. Kong LY, Qin MJ, Niwa M (2000) Diterpenoids from the rhizomes of Alpinia calcarata. J Nat Prod 63:939–942

    Article  CAS  PubMed  Google Scholar 

  61. Sivasothy Y, Ibrahim H, Paliany AS, Alias SA, Md Nor NR, Awang K (2013) A new bis-labdanic diterpene from the rhizomes of Alpinia pahangensis. Planta Med 79:1775–1780

    Article  CAS  PubMed  Google Scholar 

  62. Sy LK, Brown GD (1997) Labdane diterpenoids from Alpinia chinensis. J Nat Prod 60:904–908

    Article  CAS  Google Scholar 

  63. Xu HX, Dong H, Sim KY (1996) Labdane diterpenes from Alpinia zerumbet. Phytochemistry 42:149–151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JSPS KAKENHI Grants, JP20H00490, JP20KK0173, JP19H04649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Morita.

Ethics declarations

Conflict of interest

The authors declare no competing final interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prema, Kodama, T., Nyunt, H.H.W. et al. Anti-Vpr activities of sesqui- and diterpenoids from the roots and rhizomes of Kaempferia candida. J Nat Med 75, 489–498 (2021). https://doi.org/10.1007/s11418-020-01480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01480-z

Keywords

Navigation