Skip to main content
Log in

Inhibitory effects of cynaropicrin and related sesquiterpene lactones from leaves of artichoke (Cynara scolymus L.) on induction of iNOS in RAW264.7 cells and its high-affinity proteins

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The methanolic extract of the leaves of artichoke (Cynara scolymus L.) was found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Among the constituents of the extract, six sesquiterpene lactones (cynaropicrin, grosheimin, 11β,13-dihydrocynaropicrin, 3β-hydroxy-8α-[(S)-3-hydroxy-2-methylpropionyloxy]guaia-4(15),10(14),11(13)-trien-1α,5α,6βH-12,6-olide, 3β-hydroxy-8α-[2-methoxymethyl-2-propenoyloxy]guaia-4(15),10(14),11(13)-trien-1α,5α,6βH-12,6-olide, and deacylcynaropicrin) inhibited NO production and/or inducible nitric oxide synthase (iNOS) induction. The acyl group having an α,β-unsaturated carbonyl group at the 8-position and the α-methylene-γ-butyrolactone moiety were important for the strong inhibitory activity. Our results suggested that these sesquiterpene lactones inhibited the LPS-induced iNOS expression via the suppression of the JAK-STAT signaling pathway in addition to the κNF-κB signaling pathway. With regard to the target molecules of the sesquiterpene lactones, high-affinity proteins of cynaropicrin were purified from the cell extract. ATP/ADP translocase 2 and tubulin were identified and suggested to be involved in the cytotoxic effects of cynaropicrin, although the target molecules for the inhibition of iNOS expression were not clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nassar MI, Mohamed TK, Elshamy AI, El-Toumy SA, Abdel Lateef AM, Farrag AR (2013) Chemical constituents and anti-ulcerogenic potential of the scales of Cynara scolymus (artichoke) heads. J Sci Food Agric 93:2494–2501

    Article  CAS  Google Scholar 

  2. Ben Salem M, Affes H, Ksouda K, Dhouibi R, Sahnoun Z, Hammami S, Zeghal KM (2015) Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr 70:441–453

    Article  Google Scholar 

  3. Shimoda H, Ninomiya K, Nishida N, Yoshino T, Morikawa T, Matsuda H, Yoshikawa M (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 13:223–228

    Article  CAS  Google Scholar 

  4. Emendörfer F, Emendörfer F, Bellato F, Noldin VF, Cechinel-Filho V, Yunes RA, Delle Monache F, Cardozo AM (2005) Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum. Biol Pharm Bull 28:902–904

    Article  Google Scholar 

  5. Tanaka YT, Tanaka K, Kojima H, Hamada T, Masutani T, Tsuboi M, Akao Y (2013) Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg Med Chem Lett 23:518–523

    Article  CAS  Google Scholar 

  6. Hegazy ME, Matsuda H, Nakamura S, Yabe M, Matsumoto T, Yoshikawa M (2012) Sesquiterpenes from an Egyptian herbal medicine, Pulicaria undulate, with inhibitory effects on nitric oxide production in RAW264.7 macrophage cells. Chem Pharm Bull 60:363–370

    Article  CAS  Google Scholar 

  7. Miyase T, Ueno A, Noro T, Kuroyanagi M, Fukushima S (1985) Studies on sesquiterpene glycosides from Crepis japonica Benth. Chem Pharm Bull 33:4451–4456

    Article  CAS  Google Scholar 

  8. Marco JA, Sanz-Cervera JF, Garcia-Lliso V, Susanna A, Garcia-Jakas N (1994) Sesquiterpene lactones, lignans and aromatic esters from Cheirolophus species. Phytochemistry 37:1101–1107

    Article  CAS  Google Scholar 

  9. Marco JA, Sanz JF, Sancenon F, Rustaiyan SA, A, Saberi M, (1992) Sesquiterpene lactones and lignans from Centaurea species. Phytochemistry 31:3527–3530

    Article  CAS  Google Scholar 

  10. Ha TJ, Yang MS, Pak Y, Lee JR, Lee KD, Kim HM, Park KH (2002) New guaiane-type sesquiterpene lactones from Hemisteptia lyrata Bunge. Heterocycles 57:151–155

    Article  CAS  Google Scholar 

  11. Ha TJ, Jang DS, Lee JR, Lee KD, Lee J, Hwang SW, Jung HJ, Nam SH, Park KH, Yang MS (2003) Cytotoxic effects of sesquiterpene lactones from the flowers of Hemisteptia lyrata B. Arch Pharm Res 26:925–928

    Article  CAS  Google Scholar 

  12. Ha TJ, Park KH, Jang DS, Lee JR, Park KM, Yang MS (2003) New sesquiterpene lactones from Hemisteptia lyrata Bunge. Heterocycles 60:623–629

    Article  CAS  Google Scholar 

  13. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  CAS  Google Scholar 

  14. Dey P, Panga V, Raghunathan S (2016) A cytokine signalling network for the regulation of inducible nitric oxide synthase expression in rheumatoid arthritis. PLoS ONE. https://doi.org/10.1371/journal.pone.0161306

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M (2020) Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Cancers. https://doi.org/10.3390/cancers12071881

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gach K, Długosz A, Janecka A (2015) The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol 388:477–486

    Article  CAS  Google Scholar 

  17. Quintana J, Estévez F (2018) Recent advances on cytotoxic sesquiterpene lactones. Curr Pharn Des 24:4355–4361

    Article  CAS  Google Scholar 

  18. Murakami Y, Kawata A, Suzuki S, Fujisawa S (2018) Cytotoxicity and pro-/anti-inflammatory properties of cinnamates, acrylates and methacrylates against RAW264.7 Cells. Vivo 32:1309–1322

    Article  CAS  Google Scholar 

  19. Rao KM (2001) MAP kinase activation in macrophages. J Leukoc Biol 69:3–10

    CAS  PubMed  Google Scholar 

  20. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  CAS  Google Scholar 

  21. Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, Yoshikawa M (2011) Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol 136:488–495

    Article  CAS  Google Scholar 

  22. Morikawa T, Sueyoshi M, Chaipech S, Matsuda H, Nomura Y, Yabe M, Matsumoto T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorg Med Chem 20:4968–4977

    Article  CAS  Google Scholar 

  23. Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52

    Article  CAS  Google Scholar 

  24. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koo TH, Lee JH, Park YJ, Hong YS, Kim HS, Kim KW, Lee JJ (2001) A sesquiterpene lactone, costunolide, from Magnolia grandiflora inhibits NF-kappa B by targeting I kappa B phosphorylation. Planta Med 67:103–107

    Article  CAS  Google Scholar 

  26. Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol 8:759–766

    Article  CAS  Google Scholar 

  27. Lyss G, Knorre A, Schmidt TJ, Pahl HL, Merfort I (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 273:33508–33516

    Article  CAS  Google Scholar 

  28. Fukuda K, Akao S, Ohno Y, Yamashita K, Fujiwara H (2001) Inhibition by costunolide of phorbol ester-induced transcriptional activation of inducible nitric oxide synthase gene in a human monocyte cell line THP-1. Cancer Lett 164:7–13

    Article  CAS  Google Scholar 

  29. Matsuda H, Toguchida I, Ninomiya K, Kageura T, Morikawa T, Yoshikawa M (2003) Effects of sesquiterpenes and amino acid-sesquiterpene conjugates from the roots of Saussurea lappa on inducible nitric oxide synthase and heat shock protein in lipopolysaccharide-activated macrophages. Bioorg Med Chem 11:709–715

    Article  CAS  Google Scholar 

  30. Ivashkiv LB, Hu X (2004) Signaling by STATs. Arthritis Res Ther 6:159–168

    Article  CAS  Google Scholar 

  31. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250

    Article  CAS  Google Scholar 

  32. Cai B, Cai JP, Luo YL, Chen C, Zhang S (2015) The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation 38:1599–1608

    Article  CAS  Google Scholar 

  33. Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T (2017) Canonical and non-canonical aspects of JAK STAT signaling lessons from interferons for cytokine responses. Front Immunol. https://doi.org/10.3389/fimmu.2017.00029

    Article  PubMed  PubMed Central  Google Scholar 

  34. Legendre F, Dudhia J, Pujol JP, Bogdanowicz P (2003) JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression. J Biol Chem 278:2903–2912

    Article  CAS  Google Scholar 

  35. Najjar I, Baran-Marszak F, Le Clorennec C, Laguillier C, Schischmanoff O, Youlyouz-Marfak I, Schlee M, Bornkamm GW, Raphaël M, Feuillard J, Fagard R (2005) Latent membrane protein 1 regulates STAT1 through NF-kappaB-dependent interferon secretion in Epstein-Barr virus-immortalized B cells. J Virol 79:4936–4943

    Article  CAS  Google Scholar 

  36. Liu M, Xiao C, Sun M, Tan M, Hu L, Yu Q (2018) Parthenolide inhibits STAT3 signaling by covalently targeting janus kinases. Molecules. https://doi.org/10.3390/molecules23061478

    Article  PubMed  PubMed Central  Google Scholar 

  37. Butturini E, Cavalieri E, de Prati AC, Darra E, Rigo A, Shoji K, Murayama N, Yamazaki H, Watanabe Y, Suzuki H, Mariotto S (2014) Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS ONE. https://doi.org/10.1371/journal.pone.0020174

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scarponi C, Butturini E, Sestito R, Madonna S, Cavani A, Mariotto S, Albanesi C (2014) Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide. PLoS ONE. https://doi.org/10.1371/journal.pone.0107904

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jacobs AT, Ignarro LJ (2001) Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J Biol Chem 276:47950–47957

    Article  CAS  Google Scholar 

  40. Yu Q, Zeng K, Ma X, Song F, Jiang Y, Tu P, Wang X (2016) Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways. Int Immunopharmacol 38:104–114

    Article  CAS  Google Scholar 

  41. Chevrollier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta 1807:562–567

    Article  CAS  Google Scholar 

  42. Dahout-Gonzalez C, Nury H, Trézéguet V, Lauquin GJ, Pebay-Peyroula E, Brandolin G (2006) Molecular, functional, and pathological aspects of the mitochondrial ADP/ATP carrier. Physiology 21:242–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Number 20K07109 (S. Nakamura). The authors thank Mae Chu Co. Ltd. for supplying materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Matsuda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3524 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Nakashima, S., Nakamura, S. et al. Inhibitory effects of cynaropicrin and related sesquiterpene lactones from leaves of artichoke (Cynara scolymus L.) on induction of iNOS in RAW264.7 cells and its high-affinity proteins. J Nat Med 75, 381–392 (2021). https://doi.org/10.1007/s11418-020-01479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01479-6

Keywords

Navigation