Skip to main content
Log in

Danshen formula granule and salvianic acid A alleviate ethanol-induced neurotoxicity

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

As a direct neurotoxin, ethanol exposure is associated with nerve damage and dysfunction of central nervous system (CNS) and induced obvious neurotoxicity by increasing the reactive oxygen species (ROS) production, activation of endogenous apoptotic as well as necrotic signals, and other molecular mechanisms. The previous studies had demonstrated that natural herbal medicine offers protective effectiveness on ethanol-induced nerve cell damage. Danshen and its extracts have been known to have an antioxidant property and neuroprotective effects. However, the protective effects of Danshen formula granule and salvianic acid A on ethanol-induced neurotoxicity remain unknown. In this study, we found that the Danshen formula granule and salvianic acid A significantly inhibited the ethanol-induced cell death, blocked LDH release, and reduced dendritic spine loss. Furthermore, the intracellular ROS, MDA production, and ethanol-induced apoptosis were significantly ameliorated with Danshen formula granule and salvianic acid A pretreatment by increasing the antioxidant enzymatic activity of CAT, SOD and GSH-Px, and inhibiting apoptotic pathways. In addition, Danshen formula granule and salvianic acid A pretreatment obviously inhibit the apoptotic pathways by regulating the protein expression of Bcl-2, Bax, and Caspase-3. In conclusion, our data demonstrated that the Danshen formula granule and salvianic acid A provide a significantly protective effectiveness against ethanol-induced neurotoxicity, which might be a potential therapeutic drug for ethanol-induced neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casswell S, Thamarangsi T (2009) Reducing harm from alcohol: call to action. Lancet 373:2247–2257

    PubMed  Google Scholar 

  2. Fang SQ, Wang YT, Wei JX, Shu YH, Xiao L, Lu XM (2016) Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells. Biomed Pharmacother 79:254–262

    PubMed  CAS  Google Scholar 

  3. Zahr NM, Kaufman KL, Harper CG (2011) Clinical and pathological features of alcohol-related brain damage. Nature reviews. Neurology 7:284–294

    PubMed  CAS  Google Scholar 

  4. Acosta D, Stege TE, Erickson CK (1986) Cytotoxicity of ethanol in primary cultures of rat midbrain neurons. Toxicol Lett 30:231–235

    PubMed  CAS  Google Scholar 

  5. Huang J, Xiao L, Wei JX, Shu YH, Fang SQ, Wang YT et al (2017) Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells. Mol Med Rep 15:2235–2240

    PubMed  CAS  Google Scholar 

  6. Liu L, Cao JX, Sun B, Li HL, Xia Y, Wu Z et al (2010) Mesenchymal stem cells inhibition of chronic ethanol-induced oxidative damage via upregulation of phosphatidylinositol-3-kinase/Akt and modulation of extracellular signal-regulated kinase 1/2 activation in PC12 cells and neurons. Neuroscience 167:1115–1124

    PubMed  CAS  Google Scholar 

  7. Tian H, Ye X, Hou X, Yang X, Yang J, Wu C (2016) SVCT2, a potential therapeutic target, protects against oxidative stress during ethanol-induced neurotoxicity via JNK/p38 MAPKs, NF-kappaB and miRNA125a-5p. Free Radical Biol Med 96:362–373

    CAS  Google Scholar 

  8. Shah SA, Yoon GH, Kim MO (2015) Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol Neurobiol 51:1278–1291

    PubMed  CAS  Google Scholar 

  9. Young C, Klocke BJ, Tenkova T, Choi J, Labruyere J, Qin YQ et al (2003) Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death Differ 10:1148–1155

    PubMed  CAS  Google Scholar 

  10. Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    PubMed  CAS  Google Scholar 

  11. Ouyang X, Takahashi K, Komatsu K, Nakamura N, Hattori M, Baba A et al (2001) Protective effect of Salvia miltiorrhiza on angiotensin II-induced hypertrophic responses in neonatal rat cardiac cells. Jpn J Pharmacol 87:289–296

    PubMed  CAS  Google Scholar 

  12. Wang D, Fan G, Wang Y, Liu H, Wang B, Dong J et al (2013) Vascular reactivity screen of Chinese medicine danhong injection identifies Danshensu as a NO-independent but PGI2-mediated relaxation factor. J Cardiovasc Pharmacol 62:457–465

    PubMed  CAS  Google Scholar 

  13. Zhang XP, Jiang J, Yu YP, Cheng QH, Chen B (2010) Effect of Danshen on apoptosis and NF-kappaB protein expression of the intestinal mucosa of rats with severe acute pancreatitis or obstructive jaundice. Hepatobil Pancreat Dis Int 9:537–546

    Google Scholar 

  14. Gao LN, Yan K, Cui YL, Fan GW, Wang YF (2015) Protective effect of Salvia miltiorrhiza and Carthamus tinctorius extract against lipopolysaccharide-induced liver injury. World J Gastroenterol 21:9079–9092

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Bao D, Wang J, Liu J, Qin T, Liu H (2019) The attenuation of HIV-1 Tat-induced neurotoxicity by Salvianic acid A and Danshen granule. Int J Biol Macromol 124:863–870

    PubMed  CAS  Google Scholar 

  16. Chang CC, Chang YC, Hu WL, Hung YC (2016) Oxidative STRESS and Salvia miltiorrhiza in aging-associated cardiovascular diseases. Oxid Med Cell Longev 2016:4797102

    PubMed  PubMed Central  Google Scholar 

  17. Su CY, Ming QL, Rahman K, Han T, Qin LP (2015) Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 13:163–182

    PubMed  CAS  Google Scholar 

  18. Liu T, Jin H, Sun QR, Xu JH, Hu HT (2010) The neuroprotective effects of tanshinone IIA on beta-amyloid-induced toxicity in rat cortical neurons. Neuropharmacology 59:595–604

    PubMed  CAS  Google Scholar 

  19. Shi LL, Yang WN, Chen XL, Zhang JS, Yang PB, Hu XD et al (2012) The protective effects of tanshinone IIA on neurotoxicity induced by beta-amyloid protein through calpain and the p35/Cdk5 pathway in primary cortical neurons. Neurochem Int 61:227–235

    PubMed  CAS  Google Scholar 

  20. Yu H, Yao L, Zhou H, Qu S, Zeng X, Zhou D et al (2014) Neuroprotection against Abeta25-35-induced apoptosis by Salvia miltiorrhiza extract in SH-SY5Y cells. Neurochem Int 75:89–95

    PubMed  CAS  Google Scholar 

  21. Wang XJ, Xu JX (2005) Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci Res 51:129–138

    PubMed  CAS  Google Scholar 

  22. Bao D, Wang J, Pang X, Liu H (2017) Protective effect of quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells. Molecules 22:11

    Google Scholar 

  23. Frotscher M, Heimrich B (1995) Lamina-specific synaptic connections of hippocampal neurons in vitro. J Neurobiol 26:350–359

    PubMed  CAS  Google Scholar 

  24. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    PubMed  CAS  Google Scholar 

  25. Li J, Cheng J (2018) Apolipoprotein E4 exacerbates ethanol-induced neurotoxicity through augmentation of oxidative stress and apoptosis in N2a-APP cells. Neurosci Lett 665:1–6

    PubMed  Google Scholar 

  26. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K et al (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060

    PubMed  CAS  Google Scholar 

  27. Romero AM, Renau-Piqueras J, Pilar Marin M, Timoneda J, Berciano MT, Lafarga M et al (2013) Chronic alcohol alters dendritic spine development in neurons in primary culture. Neurotox Res 24:532–548

    PubMed  CAS  Google Scholar 

  28. Korkotian E, Botalova A, Odegova T, Segal M (2015) Chronic exposure to alcohol alters network activity and morphology of cultured hippocampal neurons. Neurotoxicology 47:62–71

    PubMed  CAS  Google Scholar 

  29. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radical Biol Med 45:1542–1550

    CAS  Google Scholar 

  30. Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G (2003) Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res 74:577–588

    PubMed  CAS  Google Scholar 

  31. Luo J (2014) Autophagy and ethanol neurotoxicity. Autophagy 10:2099–2108

    PubMed  CAS  Google Scholar 

  32. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    PubMed  CAS  Google Scholar 

  33. Vaudry D, Rousselle C, Basille M, Falluel-Morel A, Pamantung TF, Fontaine M et al (2002) Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc Natl Acad Sci USA 99:6398–6403

    PubMed  CAS  Google Scholar 

  34. Takasu T (1997) The action by ethanol and pathogenetic mechanism in chronic alcoholic neurological disorders. Nihon Rinsho Jpn J Clin Med 55(Suppl):71–75

    Google Scholar 

  35. Zhu H, Chen Z, Ma Z, Tan H, Xiao C, Tang X et al (2017) Tanshinone IIA protects endothelial Cells from H(2)O(2)-induced injuries via PXR activation. Biomol Ther 25:599–608

    CAS  Google Scholar 

  36. Pohland M, Glumm R, Wiekhorst F, Kiwit J, Glumm J (2017) Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia. Int J Nanomed 12:1577–1591

    CAS  Google Scholar 

  37. Tomasini MC, Borelli AC, Beggiato S, Tanganelli S, Loche A, Cacciaglia R et al (2016) GET73 prevents ethanol-induced neurotoxicity in primary cultures of rat hippocampal neurons. Alcohol Alcohol 51:128–135

    PubMed  CAS  Google Scholar 

  38. Moon KH, Tajuddin N, Brown J 3rd, Neafsey EJ, Kim HY, Collins MA (2014) Phospholipase A2, oxidative stress, and neurodegeneration in binge ethanol-treated organotypic slice cultures of developing rat brain. Alcohol Clin Exp Res 38:161–169

    PubMed  CAS  Google Scholar 

  39. Harris BR, Gibson DA, Prendergast MA, Blanchard JA, Holley RC, Hart SR et al (2003) The neurotoxicity induced by ethanol withdrawal in mature organotypic hippocampal slices might involve cross-talk between metabotropic glutamate type 5 receptors and N-methyl-d-aspartate receptors. Alcohol Clin Exp Res 27:1724–1735

    PubMed  CAS  Google Scholar 

  40. Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener Res 8:2003–2014

    CAS  Google Scholar 

  41. Berry MD, Boulton AA (2003) Apoptosis and human neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 27:197–198

    PubMed  Google Scholar 

  42. Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16:4058–4065

    PubMed  CAS  Google Scholar 

  43. Ekshyyan O, Aw TY (2004) Apoptosis: a key in neurodegenerative disorders. Curr Neurovasc Res 1:355–371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Key Science and Technology Fund of Henan Province in China (no. 182102310120), the Medical Scientific and Technological Project of Henan Province in China (no. SB201902030), project funded by China Postdoctoral Science Foundation (no. 2019M652542).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Liu or Dengke Bao.

Ethics declarations

Conflict of interest

All the authors of this paper declare no conflicts interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, H., Yang, Y. et al. Danshen formula granule and salvianic acid A alleviate ethanol-induced neurotoxicity. J Nat Med 74, 399–408 (2020). https://doi.org/10.1007/s11418-019-01379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01379-4

Keywords

Navigation