Skip to main content

Advertisement

Log in

Hypericum erectum alcoholic extract inhibits Toxoplasma growth and Entamoeba encystation: an exploratory study on the anti-protozoan potential

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Hypericum erectum is an important ethnobotanical medicine in East Asian tradition. To explore the anti-parasitic potential of H. erectum, inhibitory effects on the growth of intracellular parasite Toxoplasma and on the encystation of intestinal parasite Entamoeba were examined. The constituents in H. erectum alcoholic extracts and fractions separated by solvent-partitioning were analysed by high resolution LC–MS. Toxoplasma gondii growth inhibition assay was performed using GFP-labelled T. gondii strain PTG-GFP by measuring the fluorescence intensity. Anti-Toxoplasma drug pyrimethamine was used as a positive control. T. gondii-induced immune reaction was assessed by quantitative PCR and fluorescence microscopy, using co-culture of PTG-GFP and monocyte-macrophage cell line Raw264. The inhibitory effect on the encystation of Entamoeba invadens was measured by flow-cytometry, where paromomycin was used as a positive control. H. erectum methanol (MeOH) extract (50 µg/mL) and ethyl acetate (EtOAc) fraction (50 µg/mL) inhibited the growth of T. gondii, while 50%MeOH extract and hydrophilic fractions were ineffective. Co-culture with T. gondii reduced the viability of macrophages, however macrophages were protected in the presence of H. erectum MeOH extract or EtOAc fraction (above 10 µg/mL). The MeOH extract and EtOAc fraction also effectively suppressed the encystation of E. invadens at 1 mg/mL. Hypericine, a major constituent in MeOH extract and EtOAc fraction, inhibited T. gondii growth and E. invadens encystation. Our results demonstrated that H. erectum effectively inhibited Toxoplasma growth and Entamoeba encystation. These activities are partly mediated by hypericin. In addition, it was suggested the extract and fraction may protect innate immune cells from Toxoplasma-induced damages, thereby enhancing parasite clearance. Further investigation is warranted to address the in vivo effectiveness of H. erectum as an anti-protozoal medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kladar N, Srđenović B, Grujić N et al (2015) ST. John’s wort (hypericum spp.)—relation between the biological source and medical properties. In: Davis HR (ed) Hypericum. Nova Science Publishers, Inc., New York, pp 53–80

    Google Scholar 

  2. Wölfle U, Seelinger G, Schempp C (2014) Topical application of St. John’s wort (Hypericum perforatum). Planta Med 80:109–120

    Article  Google Scholar 

  3. Marrelli M, Statti G, Conforti F, Menichini F (2016) New potential pharmaceutical applications of hypericum species. Mini Rev Med Chem 16:710–720

    Article  CAS  Google Scholar 

  4. Bridi H, Meirelles GC, von Poser GL (2018) Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry 155:203–232

    Article  CAS  Google Scholar 

  5. Sasai M, Pradipta A, Yamamoto M (2018) Host immune responses to Toxoplasma gondii. Int Immunol 30:113–119

    Article  CAS  Google Scholar 

  6. Kato K (2018) How does Toxoplama gondii invade host cells? J Vet Med Sci 80:1702–1706

    Article  CAS  Google Scholar 

  7. Matsuo K, Kamai R, Uetsu H et al (2014) Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitol Int 63:638–639

    Article  Google Scholar 

  8. Hsu PC, Groer M, Beckie T (2014) New findings: depression, suicide, and Toxoplasma gondii infection. J Am Assoc Nurse Pr 26:629–637. https://doi.org/10.1002/2327-6924.12129

    Article  Google Scholar 

  9. Robert-Gangneux F, Dardé ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25:264–296. https://doi.org/10.1128/CMR.05013-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisch D, Bando H, Clough B et al (2019) Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J 38:e100926

    Article  Google Scholar 

  11. Safronova A, Araujo A, Camanzo E et al (2019) Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat Immunol 20:64–72

    Article  CAS  Google Scholar 

  12. Dégbé M, Debierre-Grockiego F, Tété-Bénissan A et al (2018) Extracts of Tectona grandis and Vernonia amygdalina have anti-Toxoplasma and pro-inflammatory properties in vitro. Parasite 2018:2511. https://doi.org/10.1051/parasite/2018014

    Article  Google Scholar 

  13. Jeelani G, Nozaki T (2016) Entamoeba thiol-based redox metabolism: a potential target for drug development. Mol Biochem Parasitol 206:39–45. https://doi.org/10.1016/j.molbiopara.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Aguilar-Díaz H, Díaz-Gallardo M, Laclette JP, Carrero JC (2010) In vitro induction of Entamoeba histolytica cyst-like structures from trophozoites. PLoS Negl Trop Dis 4:e607. https://doi.org/10.1371/journal.pntd.0000607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mi-Ichi F, Yoshida H, Hamano S (2016) Entamoeba encystation: new targets to prevent the transmission of amebiasis. PLoS Pathog 12:e1005845

    Article  Google Scholar 

  16. Avron B, Stolarsky T, Chayen A, Mirelman D (1986) Encystation of Entamoeba invadens IP-1 is induced by lowering the osmotic pressure and depletion of nutrients from the medium. J Protozool 33:522–525

    Article  CAS  Google Scholar 

  17. Mi-Ichi F, Miyake Y, Tam VK, Yoshida H (2018) A flow cytometry method for dissecting the cell differentiation process of entamoeba encystation. Front Cell Infect Microbiol 8:250. https://doi.org/10.3389/fcimb.2018.00250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tagboto S, Townson S (2001) Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol 50:199–295

    Article  CAS  Google Scholar 

  19. Sepulveda-Arias J, Veloza L, Mantilla-Muriel L (2014) Anti-Toxoplasma activity of natural products: a review. Recent Pat Antiinfect Drug Discov 9:186–194

    Article  CAS  Google Scholar 

  20. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  CAS  Google Scholar 

  21. Cook M, Jacobs L (1958) In vitro investigations on the action of pyrimethamine against Toxoplasma gondii. J Parasitol 44:280–288

    Article  CAS  Google Scholar 

  22. Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  23. Jeelani G, Sato D, Husain A et al (2012) Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation. PLoS One 7:e37740

    Article  CAS  Google Scholar 

  24. Lebaron P, Catala P, Parthuisot N (1998) Effectiveness of SYTOX green stain for bacterial viability assessment. Appl Env Microbiol 64:2697–2700

    Article  CAS  Google Scholar 

  25. Venkatnarayanan S, Sriyutha Murthy P, Nancharaiah YV et al (2017) Chlorination induced damage and recovery in marine diatoms: assay by SYTOX® Green staining. Mar Pollut Bull 124:819–826. https://doi.org/10.1016/j.marpolbul.2016.12.059

    Article  CAS  PubMed  Google Scholar 

  26. Murata Y, Sugi T, Weiss L, Kato K (2017) Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites. PLoS One 12:e0178203

    Article  Google Scholar 

  27. Orhan IE, Kartal M, Gülpinar AR et al (2013) Assessment of antimicrobial and antiprotozoal activity of the olive oil macerate samples of Hypericum perforatum and their LC–DAD–MS analyses. Food Chem 138:870–875. https://doi.org/10.1016/j.foodchem.2012.11.053

    Article  CAS  PubMed  Google Scholar 

  28. Napoli E, Siracusa L, Ruberto G et al (2018) Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species—a comparative study. Phytochemistry 152:162–173. https://doi.org/10.1016/j.phytochem.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  29. Brolis M, Gabetta B, Fuzzati N et al (1998) Identification by high-performance liquid chromatography–diode array detection–mass spectrometry and quantification by high-performance liquid chromatography-UV absorbance detection of active constituents of Hypericum perforatum. J Chromatogr A 825:9–16

    Article  CAS  Google Scholar 

  30. Singh S, Kumari E, Bhardwaj R et al (2017) Molecular events leading to death of Leishmania donovani under spermidine starvation after hypericin treatment. Chem Biol Drug Des 90:962–971. https://doi.org/10.1111/cbdd.13022

    Article  CAS  PubMed  Google Scholar 

  31. Sytar O, Švedienė J, Ložienė K et al (2016) Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm Biol 54:3121–3125

    Article  CAS  Google Scholar 

  32. Yalın Sapmaz Ş, Şen S, Özkan Y, Kandemir H (2019) Relationship between Toxoplasma gondii seropositivity and depression in children and adolescents. Psychiatry Res 278:263–267

    Article  Google Scholar 

  33. Vlatkovic S, Sagud M, Svob Strac D et al (2018) Increased prevalence of Toxoplasma gondii seropositivity in patients with treatment-resistant schizophrenia. Schizophr Res 193:480–481

    Article  Google Scholar 

  34. Nürk N, Madriñán S, Carine M et al (2013) Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). Mol Phylogenet Evol 66:1–16

    Article  Google Scholar 

  35. Wink M (2012) Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 17:12771–12791. https://doi.org/10.3390/molecules171112771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martínez-Castillo M, Pacheco-Yepez J, Flores-Huerta N et al (2018) Flavonoids as a natural treatment against Entamoeba histolytica. Front Cell Infect Microbiol 8:209. https://doi.org/10.3389/fcimb.2018.00209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yin R, Hamblin M (2015) Antimicrobial photosensitizers: drug discovery under the spotlight. Curr Med Chem 22:2159–2185

    Article  CAS  Google Scholar 

  38. An TY, Shan MD, Hu LH et al (2002) Polyprenylated phloroglucinol derivatives from Hypericum erectum. Phytochemistry 59:395–398

    Article  CAS  Google Scholar 

  39. Ishida Y, Shirota O, Sekita S et al (2010) Polyprenylated benzoylphloroglucinol-type derivatives including novel cage compounds from Hypericum erectum. Chem Pharm Bull 58:336–343

    Article  CAS  Google Scholar 

  40. Gessner P (1995) Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161–179

    Article  CAS  Google Scholar 

  41. Brennan-Krohn T, Kirby J (2019) When one drug is not enough: context, methodology, and future prospects in antibacterial synergy testing. Clin Lab Med 39:345–358. https://doi.org/10.1016/j.cll.2019.04.002

    Article  PubMed  Google Scholar 

  42. Yang Y, Zhang Z, Li S et al (2014) Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia 92:133–147. https://doi.org/10.1016/j.fitote.2013.10.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yasunobu Miyake (Saga University) and Dr. Akihiro Sekine (Chiba University) who provided their expertise that assisted this study, and all our colleagues who created the supportive work environment. This work was funded by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan 19K07520 and 17KT0124 to K.N., 17K15676 to K.H., and 19K07839 to N.S., AMED-J-PRIDE (JP18fm0208025) to F.M. and H.Y. This work was also supported by the Naito Foundation to F.M. The flow cytometric analysis was performed using a MACSQuant Analyzer at the Analytical Research Center for Experimental Sciences, Saga University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Shinjyo.

Ethics declarations

Conflict of interest

The authors report no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinjyo, N., Nakayama, H., Ishimaru, K. et al. Hypericum erectum alcoholic extract inhibits Toxoplasma growth and Entamoeba encystation: an exploratory study on the anti-protozoan potential. J Nat Med 74, 294–305 (2020). https://doi.org/10.1007/s11418-019-01369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01369-6

Keywords