Skip to main content

Mycobacterium smegmatis alters the production of secondary metabolites by marine-derived Aspergillus niger

Abstract

It is generally accepted that fungi have a number of dormant gene clusters for the synthesis of secondary metabolites, and the activation of these gene clusters can expand the diversity of secondary metabolites in culture. Recent studies have revealed that the mycolic acid-containing bacterium Tsukamurella pulmonis activates dormant gene clusters in the bacterial genus Streptomyces. However, it is not clear whether the mycolic acid-containing bacteria activate dormant gene clusters of fungi. We performed co-culture experiments using marine-derived Aspergillus niger with Mycobacterium smegmatis, a mycolic acid-containing bacteria. The co-cultivation resulted in the production of a pigment by A. niger and increased cytotoxic activity of the extract against human prostate cancer DU145 cells. An analysis of secondary metabolites in the extract of the co-culture broth revealed that the increase in cytotoxic activity was caused by the production of malformin C (1), and that TMC-256A1 (2), desmethylkotanin (3), and aurasperone C (4) were selectively produced under co-culture conditions. In addition, further study suggested that direct interaction between the two microorganisms was necessary for the production of the pigment and the cytotoxic compound malformin C (1) from A. niger. Given the biological activities of malformin C, including cytotoxic activity, our approach for increasing the production of bioactive secondary metabolites has important practical applications and may facilitate structural analyses of novel bioactive compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, OʼNeil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  Google Scholar 

  2. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384

    CAS  Article  Google Scholar 

  3. Li X, Xia Z, Tang J, Wu J, Tong J, Li M, Ju J, Chen H, Wang L (2017) Identification and biological evaluation of secondary metabolites from marine derived fungi-Aspergillus sp. SCSIOW3, cultivated in the presence of epigenetic modifying agents. Molecules 22:E1302

    Article  Google Scholar 

  4. Chai YJ, Cui CB, Li CW, Wu CJ, Tian CK, Hua W (2012) Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59. Mar Drugs 10:559–582

    CAS  Article  Google Scholar 

  5. Simkhada D, Zhang H, Mori S, Williams H, Watanabe CM (2013) Activation of cryptic metabolite production through gene disruption: dimethyl furan-2,4-dicarboxylate produced by Streptomyces sahachiroi. Beilstein J Org Chem 9:1768–1773

    Article  Google Scholar 

  6. Abdel-Wahab NM, Scharf S, Özkaya FC, Kurtán T, Mándi A, Fouad MA, Kamel MS, Müller WEG, Kalscheuer R, Lin W, Daletos G, Ebrahim W, Liu Z, Proksch P (2019) Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta Med 85:503–512

    CAS  Article  Google Scholar 

  7. Yu L, Ding W, Ma Z (2016) Induced production of cytochalasans in co-culture of marine fungus Aspergillus flavipes and actinomycete Streptomyces species. Nat Prod Res 30:1718–1723

    CAS  Article  Google Scholar 

  8. Nutzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci USA 108:14282–14287

    CAS  Article  Google Scholar 

  9. Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406

    CAS  Article  Google Scholar 

  10. Hoshino S, Zhang L, Awakawa T, Wakimoto T, Onaka H, Abe I (2015) Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J Antibiot (Tokyo) 68:342–344

    CAS  Article  Google Scholar 

  11. Hoshino S, Wakimoto T, Onaka H, Abe I (2015) Chojalactones A-C, cytotoxic butanolides isolated from Streptomyces species cultivated with mycolic acid containing bacterium. Org Lett 17:1501–1504

    CAS  Article  Google Scholar 

  12. Hoshino S, Okada M, Wakimoto T, Zhang H, Hayashi F, Onaka H, Abe I (2015) Niizalactams A-C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. J Nat Prod 78:3011–3017

    CAS  Article  Google Scholar 

  13. Hayashi A, Arai M, Fujita M, Kobayashi M (2009) Pyripyropenes, fungal sesquiterpenes conjugated with α-pyrone and pyridine moieties, exhibits anti-angiogenic activity against human umbilical vein endothelial cells. Bio Pharm Bull 32:1261–1265

    CAS  Article  Google Scholar 

  14. Arai M, Niikawa H, Kobayashi M (2013) Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species. J Nat Med 67:271–275

    CAS  Article  Google Scholar 

  15. Arai M, Yamano Y, Kamiya K, Setiawan A, Kobayashi M (2016) Anti-dormant mycobacterial activity and target molecule of melophlins, tetramic acid derivatives isolated from a marine sponge of Melophlus species. J Nat Med 70:467–475

    CAS  Article  Google Scholar 

  16. Kamiya K, Arai M, Setiawan A, Kobayashi M (2017) Anti-dormant Mycobacterial activity of Viomellein and Xanthomegnin, Naphthoquinone Dimers produced by marine-derived Aspergillus species. Nat Prod Commun 12:579–581

    PubMed  Google Scholar 

  17. Anderegg RJ, Biemann K, Buchi G, Cushman M (1976) Malformin C, a new metabolite of Aspergillus niger. J Am Chem Soc 98:3365–3370

    CAS  Article  Google Scholar 

  18. Wang J, Jiang Z, Lam W, Gullen EA, Yu Z, Wei Y, Wang L, Zeiss C, Beck A, Cheng EC, Wu C, Cheng YC, Zhang Y (2015) Study of Malformin C, a fungal source cyclic pentapeptide, as an anti-cancer drug. PLoS One 10:e0140069

    Article  Google Scholar 

  19. Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, Ohnuki T (2002) TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J Antibiot (Tokyo) 55:685–692

    CAS  Article  Google Scholar 

  20. Büchi G, Klaubert DH, Shank RC, Weinreb SM, Wogan GN (1971) Structure and synthesis of kotanin and desmethylkotanin, metabolites of Aspergillus glaucus. J Org Chem 36:1143–1147

    Article  Google Scholar 

  21. Tanaka H, Wang PL, Namiki M (1972) Structure of aurasperone C. Agr Biol Chem 36:2511–2517

    CAS  Article  Google Scholar 

  22. Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1242

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. William R. Jacobs, Jr. (Albert Einstein College of Medicine, NY, USA) and Dr. Kazutake Tsujikawa (Osaka University, Osaka, Japan) for providing M. smegmatis mc2155 and DU145 cells, respectively. This research was funded by the platform project for supporting drug discovery and life science research (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS]) from AMED (Grant no. JP19am0101084), Kobayashi International Scholarship Foundation, a Grant-in-Aid for scientific research B (Grant nos. 18H02096 and17H04645) from the Japan Society for the Promotion of Science (JSPS) to M.A., and a Grant-in-Aid for research activity start-up (Grant no. 18H06102) from JSPS to Y.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Arai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5538 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jomori, T., Hara, Y., Sasaoka, M. et al. Mycobacterium smegmatis alters the production of secondary metabolites by marine-derived Aspergillus niger. J Nat Med 74, 76–82 (2020). https://doi.org/10.1007/s11418-019-01345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01345-0

Keywords

  • Co-culture
  • Aspergillus niger
  • Mycobacterium smegmatis
  • Mycolic acid-containing bacteria
  • Secondary metabolite