Nussbaumer S, Bonnabry P, Veuthey JL, Sandrine F (2011) Analysis of anticancer drugs: a review. Talanta 85:2265–2289
CAS
PubMed
Article
Google Scholar
Dropcho EJ (2011) The neurologic side effects of chemotherapeutic agents. Continuum (Minneap Minn) 17:95–112
Google Scholar
Carroll RE, Benya RV, Turgeon DK et al (2011) Phase IIA clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 4(3):354–364
CAS
Article
Google Scholar
Ryan JL, Heckler CE, Ling M et al (2013) Curcumin for radiation dermatitis: a randomized, double blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 180(1):34–43
CAS
PubMed
PubMed Central
Article
Google Scholar
Tsao AS, Liu D, Martin J, Tang XM et al (2014) Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev Res (Phila) 2(11):931–941
Article
CAS
Google Scholar
Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K (2011) Clinical trials of resveratrol. Ann N Y Acad Sci 1215:161–169
CAS
PubMed
Article
Google Scholar
Ho JW, Cheung MW (2014) Combination of phytochemicals as adjuvants for cancer therapy. Recent Pat Anticancer Drug Discov 9(3):297–302
CAS
PubMed
Article
Google Scholar
Lehar J, Krueger AS, Avery W et al (2009) Synergistic drug combination tend to improve therapeutically relevant selectively. Nat Biotechnol 27:659–666
CAS
PubMed
PubMed Central
Article
Google Scholar
de Kok TM, van Breda SG, Manson MM (2008) Mechanisms of combined action of different chemopreventive dietary compounds: a review. Eur J Nutr 47(Supp 2):51–59
PubMed
Article
CAS
Google Scholar
Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZW (2015) γ-Tocotrienol and 6-gingerol in combination synergistically induce cytotoxicity and apoptosis in HT-29 and SW837 human colorectal cancer cells. Molecules 20(6):10280–10297
CAS
PubMed
Article
Google Scholar
Kapoor V, Aggarwal S, Das SN (2016) 6-Gingerol mediates its anti tumor activities in human oral and cervical cancer cell lines through apoptosis and cell cycle arrest. Phytother Res 30:588–595
CAS
PubMed
Article
Google Scholar
Zhang F, Zhang JG, Qu J, Zhang Q, Prasad C, Wei ZJ (2017) Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drug on human cervical adenocarcinoma. Food Chem Toxicol 109:910–922
CAS
PubMed
Article
Google Scholar
Weng CJ, Wu CF, Huang HW, Ho CT, Yen GC (2010) Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger on human hepatocarcinoma cells. Mol Nutr Food Res 54:1618–1627
CAS
PubMed
Article
Google Scholar
Al-Abbasi FA, Alghamdi EA, Baghdadi MA, Alamoudi AJ et al (2016) Gingerol synergizes the cytotoxic effects of doxorubicin against liver cancer cells and protects from its vascular toxicity. Molecules 21(7):E886
PubMed
Article
CAS
Google Scholar
Abubakar IB, Lim KH, Kam TS, Loh HS (2017) Enhancement of apoptotic activities on brain cancer cells via combination of γ-tocotrienol and jerantinine. Phytomedicine 30:74–84
CAS
PubMed
Article
Google Scholar
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2016) γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 115(7):814–824
CAS
PubMed
PubMed Central
Article
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578
CAS
PubMed
PubMed Central
Article
Google Scholar
Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17(13):1–19
Google Scholar
Kim EC, Min JK, Kim TY, Lee SJ, Yang HO, Han S, Kim YM et al (2005) [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 335(2):300–308
CAS
PubMed
Article
Google Scholar
Wang CC, Chen LG, Lee LT, Yang LL (2003) Effects of 6-gingerol, an antioxidant from ginger, on inducing apoptosis in human leucemic HL-60 cells. Vivo 17(6):641–645
CAS
Google Scholar
Funk JL, Frye JB, Oyarzo JN, Timmermann BN (2009) Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. J Nat Prod 72(3):403–407
CAS
PubMed
PubMed Central
Article
Google Scholar
Weng CJ, Chou CP, Ho CT, Yen GC (2012) Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol. Mol Nutr Food Res 56(8):1304–1314
CAS
PubMed
Article
Google Scholar
Poltronieri J, Becceneri AB, Fuzer AM, Filho JC, Martin AC, Cominetti MR et al (2014) [6]-gingerol as a cancer chemopreventive agent: a review of its activity on different steps of the metastatic process. Mini Rev Med Chem 14(4):313–321
CAS
PubMed
Article
Google Scholar
Lee SH, Cekanova M, Baek SJ (2008) Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 47(3):197–208
CAS
PubMed
PubMed Central
Article
Google Scholar
Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874
CAS
PubMed
Article
Google Scholar
Shukla Y, Prasad S, Tripathi C, Singh M, George J, Kalra N (2007) In vitro and in vivo modulation of testosterone mediated alterations in apoptosis related proteins by [6]-gingerol. Mol Nutr Food Res 51(12):1492–1502
CAS
PubMed
Article
Google Scholar
Nakashima K, Virgona N, Miyazawa M, Watanabe T, Yano T (2010) The tocotrienol rich fraction from rice bran enhances cisplatin-induced cytotoxicity in human mesothelioma H28 cells. Phytother Res 24(9):1317–1321
CAS
PubMed
Article
Google Scholar
Radhakrishnan AK, Mahalingam D, Selvaduraym KR, Nesaretnam K (2013) Supplementation with natural forms of vitamin E augments antigen-specific Th1-type immune response to tetanus toxoid. Biomed Res Int 2013:782067
PubMed
PubMed Central
Google Scholar
Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, Park BJ, Korean Meta-Analysis Study Group (2013) Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346:f10
PubMed
PubMed Central
Article
CAS
Google Scholar
Pierpaoli E, Viola V, Barucca A, Orlando F, Galli F, Provinciali M (2013) Effect of annatto-tocotrienols supplementation on the development of mammary tumors in HER-2/neu transgenic mice. Carcinogenesis 34(6):1352–1360
CAS
PubMed
Article
Google Scholar
Sun W, Wang Q, Chen B, Liu J, Liu H, Xu W (2008) Gamma-tocotrienol-induced apoptosis in human gastric cancer SGC-7901 cells is associated with a suppression in mitogen-activated protein kinase signalling. Br J Nutr 99(6):1247–1254
CAS
PubMed
Article
Google Scholar
Shirode AB, Sylvester PW (2010) Synergistic anticancer effects of combined γ-tocotrienol and celecoxib treatment are associated with suppression in Akt and NFκB signaling. Biomed Pharmacother 64(5):327–332
CAS
PubMed
Article
Google Scholar
Samant GV, Wali VB, Sylvester PW (2010) Anti-proliferative effects of gamma-tocotrienol on mammary tumour cells are associated with suppression of cell cycle progression. Cell Prolif 43(1):77–83
CAS
PubMed
Article
Google Scholar
Shirode AB, Sylvester PW (2011) Mechanisms mediating the synergistic anticancer effects of combined γ-tocotrienol and celecoxib treatment. J Bioanal Biomed 3:1–7
CAS
PubMed
Article
Google Scholar
Kannappan R, Gupta SC, Kim JH, Aggarwal BB (2012) Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr 7(1):43–52
CAS
PubMed
Article
Google Scholar
Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Crowley JJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51
CAS
PubMed
Article
Google Scholar
Comitato R, Leoni G, Canali R, Ambra R, Nesaretnam K, Virgili F (2010) Tocotrienols activity in MCF-7 breast cancer cells: involvement of ER-beta signal transduction. Mol Nutr Food Res 54(5):669–678
CAS
PubMed
Article
Google Scholar
Mahalingam D, Radhakrishnan AK, Amom Z, Ibrahim N, Nesaretnam K (2011) Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers. Eur J Clin Nutr 65(1):63–69
CAS
PubMed
Article
Google Scholar
Zhang JS, Li DM, Ma Y, He N, Gu Q, Wang FS, Jiang SQ et al (2013) γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells. PLoS One 8(2):e57779
CAS
PubMed
PubMed Central
Article
Google Scholar
Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72C:76–90
Article
CAS
Google Scholar
Siveen KS, Ahn KS, Ong TH, Shanmugam MK, Li F, Sethi G et al (2014) γ-Tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget 5(7):1897–1911
PubMed
PubMed Central
Article
Google Scholar
Park YJ, Wen J, Bang S, Park SW, Song SY (2006) [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med J 47(5):688–697
CAS
PubMed
PubMed Central
Article
Google Scholar
Oyagbemi AA, Saba AB, Azeez OI (2010) Molecular targets of [6]-gingerol: its potential roles in cancer chemoprevention. BioFactors 36(3):169–178
CAS
PubMed
Article
Google Scholar
Hsieh TC, Elangovan S, Wu JM (2010) γ-Tocotrienol controls proliferation, modulates expression of cell cycle regulatory proteins and up-regulates quinone reductase NQO2 in MCF-7 breast cancer cells. Anticancer Res 30:2869–2874
CAS
PubMed
Google Scholar
Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M (2001) Tumor susceptibility of p21Waf1/Cip1- deficient mice. Cancer Res 61:6234–6238
CAS
PubMed
Google Scholar
Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180
CAS
PubMed
PubMed Central
Article
Google Scholar
Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG (2009) p57KIP2: “Kip”ing the cell under control. Mol Cancer Res 7(12):1902–1919
CAS
PubMed
Article
Google Scholar
Hashimoto Y, Kohri K, Kaneko Y, Morisaki H, Kato T, Ikeda K, Nakanishi M (1998) Critical role for the 310 helix region of p57 (Kip2) in cyclin-dependent kinase 2 inhibition and growth suppression. J Biol Chem 273(26):16544–16550
CAS
PubMed
Article
Google Scholar
Zhao H, Jin S, Antinore MJ, Lung FD, Fan F, Blanck P, Zhan Q et al (2000) The central region of Gadd45 is required for its interaction with p21/WAF1. Exp Cell Res 258(1):92–100
CAS
PubMed
Article
Google Scholar
Chang Q, Bhatia D, Zhang Y, Meighan T, Castranova V, Shi X, Chen F (2007) Incorporation of aninternal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression. Cancer Res 67:6146–6154
CAS
PubMed
Article
Google Scholar
Salvador JM, Brown-Clay JD, Fornace AJ (2013) Gadd45 in stress signaling, cell cycle control, and apoptosis. Adv Exp Med Biol 793:1–19
CAS
PubMed
Article
Google Scholar
Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA (2000) Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control. J Biol Chem 275(22):16810–16819
CAS
PubMed
Article
Google Scholar
Yang C, Yang S, Wood KB, Hornicek FJ, Schwab JH, Fondren G, Mankin H, Duan Z (2009) Multidrug resistant osteosarcoma cell lines exhibit deficiency of GADD45alpha expression. Apoptosis 14(1):124–133
CAS
PubMed
Article
Google Scholar
Gao M, Guo N, Huang C, Song L (2009) Diverse roles of GADD45alpha in stress signaling. Curr Protein Pept Sci 10:388–394
CAS
PubMed
Article
Google Scholar
Paruthiyil S, Cvoro A, Tagliaferri M, Cohen I, Shtivelman E, Leitman DC (2011) Estrogen receptor beta causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclinB1, GADD45A, and BTG2. Breast Cancer Res Treat 129(3):777–784
CAS
PubMed
Article
Google Scholar
Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286:7468–7478
CAS
PubMed
Article
Google Scholar
Song L, Li J, Zhang D, Liu ZG, Ye J, Zhan Q, Shen HM, Whiteman M, Huang C (2006) IKKbeta programs to turn on the GADD45alpha-MKK4-JNK apoptotic cascade specifically via p50 NF-kappaB in arsenite response. J Cell Biol 175:607–617
CAS
PubMed
PubMed Central
Article
Google Scholar
Yoshida T, Maeda A, Horinaka M, Shiraishi T, Nakata S, Wakada M, Yogosawa S, Sakai T (2005) Quercetin induces gadd45 expression through a p53-independent pathway. Oncol Rep 14(5):1299–1303
CAS
PubMed
Google Scholar
Wang XW, Zhan Q, Coursen JD, Khan MA, Yu L, Hollander MC, Harris CC et al (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96(7):3706–3711
CAS
PubMed
PubMed Central
Article
Google Scholar
Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N, Zhao Y, Taniguchi N, Huang XL, Goldring MB (2005) A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 280:38544–38555
CAS
PubMed
Article
Google Scholar
Saha A, Kuzuhara T, Echigo N, Fujii A, Suganuma M, Fujiki H (2010) Apoptosis of human lung cancer cells by curcumin mediated through up-regulation of “growth arrest and DNA damage inducible genes 45 and 153. Biol Pharm Bull 33(8):1291–1299
CAS
PubMed
Article
Google Scholar
Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Costa RH et al (2005) Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25(24):10875–10894
CAS
PubMed
PubMed Central
Article
Google Scholar
Raychaudhuri P, Park HJ (2011) FoxM1: a master regulator of tumor metastasis. Cancer Res 71(13):4329–4333
CAS
PubMed
PubMed Central
Article
Google Scholar
Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor FOXM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65(12):5181–5189
CAS
PubMed
Article
Google Scholar
Bektas N, Haaf A, Veeck J, Wild PJ, Lüscher-Firzlaff J, Hartmann A, Knuchel R, Dahl E (2008) Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC Cancer 8:42–50
PubMed
PubMed Central
Article
CAS
Google Scholar
van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, Hanash SM et al (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163(3):1033–1043
PubMed
PubMed Central
Article
Google Scholar
Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Huang S et al (2006) FOXM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66(7):3593–3602
CAS
PubMed
Article
Google Scholar
Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, Petersen I et al (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98(24):13784–13789
CAS
PubMed
PubMed Central
Article
Google Scholar
Romagnoli S, Fasoli E, Vaira V, Falleni M, Pellegrini C, Catania A, Bosari S et al (2009) Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis. Am J Pathol 174(3):762–770
CAS
PubMed
PubMed Central
Article
Google Scholar
Douard R, Moutereau S, Pernet P, Chimingqi M, Allory Y, Manivet P, Loric S et al (2006) Sonic Hedgehog dependent proliferation in a series of patients with colorectal cancer. Surgery 139(5):665–670
PubMed
Article
Google Scholar
Radhakrishnan SK, Gartel AL (2008) FOXM1: the Achilles’ heel of cancer? Nat Rev Cancer 8(3):c1
PubMed
Article
CAS
Google Scholar
Karadedou CT, Gomes AR, Chen J, Petkovic M, Zwolinska AK, Feltes A, Lam EW et al (2012) FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer. Oncogene 31:1845–1858
CAS
PubMed
Article
Google Scholar
Francis RE, Myatt SS, Krol J, Hartman J, Peck B, Lam EW et al (2009) FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol 35:57–68
CAS
PubMed
Google Scholar
McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Lam EW et al (2009) Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8:582–591
CAS
PubMed
Article
Google Scholar
Fernandez de Mattos S, Villalonga P, Clardy J, Lam EW (2008) FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol Cancer Ther 7:3237–3246
CAS
PubMed
Article
Google Scholar
Kalinichenko VV, Major ML, Wang X, Petrovic V, Yoder HM, Costa RH et al (2004) Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 18(7):830–850
CAS
PubMed
PubMed Central
Article
Google Scholar
Katoh M (2007) Networking of WNT, FGF, Notch, BMP, and hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 3(1):30–38
CAS
PubMed
Article
Google Scholar
Sarkar FH, Li Y, Wang Z, Kong D (2010) The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev 29(3):383–394
CAS
PubMed
PubMed Central
Article
Google Scholar
Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74(5):1043–1050
CAS
PubMed
PubMed Central
Article
Google Scholar
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790
CAS
PubMed
Article
Google Scholar
Xu W, Du M, Zhao Y, Wang Q, Sun W, Chen B (2012) γ-Tocotrienol inhibits cell viability through suppression of β-catenin/Tcf signaling in human colon carcinoma HT-29 cells. J Nutr Biochem 23(7):800–807
CAS
PubMed
Article
Google Scholar
Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein folding environment on cancer development. Nat Rev Cancer 14:581–597
CAS
PubMed
Article
Google Scholar
Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102
CAS
PubMed
Article
Google Scholar
Harding HP, Zahng Y, Zeng H, Novoa I, Ron D et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633
CAS
PubMed
Article
Google Scholar
Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(1):135–141
CAS
PubMed
PubMed Central
Article
Google Scholar
Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96
CAS
PubMed
Article
Google Scholar
Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891
CAS
PubMed
Article
Google Scholar
Nishitoh H, Matsuzawa A, Tobiume K, Saeguda K, Takeda K, Inoue K, Ichijo H et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355
CAS
PubMed
PubMed Central
Article
Google Scholar
Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 18(8):1271–1278
CAS
PubMed
PubMed Central
Article
Google Scholar
Sano R, Reed JC (2013) ER stress induced cell death mechanisms. Biochim Biophys Acta 1833(12):3460–3470
CAS
PubMed
Article
Google Scholar
Park SK, Sanders BG, Kline K (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress dependent increase in extrinsic death receptor signaling. Breast Cancer Res Treat 124(2):361–375
CAS
PubMed
Article
Google Scholar
Patacsil D, Tran AT, Cho YS, Suy S, Saenz F, Malyukova I, Kumar D et al (2012) Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem 23(1):93–100
CAS
PubMed
Article
Google Scholar
Tiwari RV, Parajuli P, Sylvester PW (2015) γ-Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death. Biochem Cell Biol 93(4):306–320
CAS
PubMed
Article
Google Scholar
Comamito R, Guantario B, Leoni G, Nasaretnam K, Ronci MB, Canali R, Virgili F (2016) Tocotrienols induce endoplasmic reticulum stress and apoptosis in cervical cancer cells. Genes Nutr 11:32
Article
CAS
Google Scholar
Constantinou C, Hyatt JA, Vraka PS, Papas A, Papas KA, Constantinou AI et al (2009) Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives. Nutr Cancer 61(6):864–874
CAS
PubMed
Article
Google Scholar
Yap WN, Chang PN, Han HY, Lee DT, Ling MT, Wong YC, Yap YL (2008) Gamma-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signaling pathways. Br J Cancer 99(11):1832–1841
CAS
PubMed
PubMed Central
Article
Google Scholar
Nigam N, George J, Srivastava S, Roy P, Bhui K, Singh M, Shukla Y (2010) Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signalling pathway in B[a]-p-induced mouse skin tumorigenesis. Cancer Chemother Pharmacol 65(4):687–696
CAS
PubMed
Article
Google Scholar
Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AK, Soniya EV, Anto TJ (2014) [6]-Gingerol induces caspase dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One 9(8):e104401
CAS
PubMed
PubMed Central
Article
Google Scholar
Chakraborty D, Bishayee K, Ghosh S, Biswas R, Mandal SK, Khuda-Bukhsh AR (2013) [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: drug DNA interaction and expression of certain signal genes in HeLa cells. Eur J Pharmacol 694(1–3):20–29
Google Scholar
Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T et al (2005) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165(3):347–356
Article
Google Scholar
Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789
PubMed
Article
CAS
Google Scholar
Maurel M, McGrath EP, Mnich K, Healy S, Chevet E, Samali A (2015) Controlling the unfolded protein response-mediated life and death decisions in cancer. Semin Cancer Biol 33:57–66
CAS
PubMed
Article
Google Scholar
Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial divison. Science 334(6054):358–362
CAS
PubMed
PubMed Central
Article
Google Scholar
Hatch AL, Gurel PS, Higgs HN (2014) Novel roles for actin in mitochondrial fission. J Cell Sci 127:4549–4560
PubMed
PubMed Central
Google Scholar
Hoppins S, Nunnari J (2012) Mitochondrial dynamics and apoptosis-the ER connection. Science 337(6098):1052–1054
CAS
PubMed
Article
Google Scholar
Malhotra JD, Kaufman RJ (2011) ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 3(9):a004424
PubMed
PubMed Central
Article
CAS
Google Scholar
Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281(11):7620–7670
Article
CAS
Google Scholar
Zou CG, Cao XZ, Zhao YS, Gao SY, Li SD, Liu XY, Zhang Y, Zhang KQ (2008) The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor-1. Endocrinology 150(1):277–285
PubMed
Article
CAS
Google Scholar
Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23(2):103–109
CAS
PubMed
PubMed Central
Article
Google Scholar
Dobblestein M, Sorensen CS (2015) Exploiting replicative stress to treat cancer. Nat Rev Drug Dis 14(6):405–423
Article
CAS
Google Scholar
Puigvert JC, Sanjiv K, Helleday T (2016) Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 283(2):232–245
CAS
PubMed
Article
Google Scholar
De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol 3:228
PubMed
PubMed Central
Article
Google Scholar
Dong L, Wang H, Niu J, Zou M, Wu N, Wu N, Zou Z et al (2015) Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. Onco Targets Ther 8:3649–3664
CAS
PubMed
PubMed Central
Google Scholar
Kig C, Beullens M, Beke L, Van Eynde A, Linders JT, Brehmer D, Bollen M (2017) Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells. J Biol Chem 292(31):12786
CAS
PubMed
PubMed Central
Article
Google Scholar
Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Nardini D, Nakano I et al (2013) MELK-dependent FOXM! Phosphorylation is essential for proliferation of glioma stem cells. Stem Cells 31(6):1051–1063
CAS
PubMed
PubMed Central
Article
Google Scholar
Minata M, Gu C, Joshi K, Nakano-Okuno M, Hong C, Nakano I et al (2014) Multi-kinase inhibitor C1 triggers mitotic catastrophe of glioma stem cells mainly through MELK kinase inhibition. PLoS One 9(4):e92546
PubMed
PubMed Central
Article
CAS
Google Scholar
Long DT, Raschle M, Joukov V, Walter JC (2011) Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333(6038):84–87
CAS
PubMed
PubMed Central
Article
Google Scholar
Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750
CAS
PubMed
Article
Google Scholar
Wu MH, Lin LC, Lee TC (2016) Augmentation of response to therapeutic agents by (−)-gallocatechin-gallate through inhibition of RAD51 nuclear translocation. Exp Mol Ther 76(14):3733
Article
Google Scholar