Skip to main content
Log in

Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKL-induced osteoclastogenesis via downergulation of RANK expression

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Previously, we reported that cyclolinopeptides (CLs) extracted from flaxseed inhibited receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis from mouse bone marrow cells in vitro. However, mode of action involved in CLs-inhibited osteoclastogenesis has been yet unknown. Therefore, in this study, we investigated the details of inhibitory activity of cyclolinopeptide-F (CL-F) in osteoclastogenesis, as a representative of CLs. CL-F dose-dependently inhibited RANKL-induced osteoclastogenesis (IC50 0.58 µM) without cytotoxic effects. The inhibition by CL-F was mainly observed in macrophage colony-stimulating factor (M-CSF)-induced proliferation/differentiation phase from M-CSF responsive immature myeloid cells to monocyte/macrophage (M/Mϕ) lineage. Additionally, CL-F also slightly inhibited RANKL-induced differentiation phase from M/Mϕ to mature osteoclasts. Expression of RANKL receptor, RANK, in M-CSF-induced M/Mϕ, i.e. osteoclast progenitor cells, was decreased by CL-F treatment. Furthermore, RT-PCR analysis revealed that CL-F inhibited c-fos gene expression, which is reported to be crucial for RANK expression in osteoclast progenitor cells induced with M-CSF from myeloid lineage cells. These results suggested that CL-F inhibits osteoclastogenesis via down regulation of c-fos expression, which leads to the down-regulation of RANK expression in M-CSF-induced osteoclast progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT (2014) Flaxseed (Linum usitatissimum L.) compositions and processing: a review. Trends Food Sci Technol 38:5–20

    Article  CAS  Google Scholar 

  2. Aladedunye F, Sosinska E, Przybylski R (2013) Flaxseed cyclolinopeptides: analysis and storage stability. J Am Oil Chem Soc 90:419–428

    Article  CAS  Google Scholar 

  3. Schmidt TJ, Klaes M, Sendker J (2012) Lignans in seeds of Linum species. J Phytochem 82:89–99

    Article  CAS  Google Scholar 

  4. Wang YF, Xu ZK, Yang DH, Yao HY, Ku BS, Ma XQ, Wang CZ, Liu SL, Cai SQ (2013) The antidepressant effect of secoisolariciresinol, a lignan-type phytoestrogen constituent of flaxseed, on ovariectomized mice. J Nat Med 67:222–227

    Article  CAS  Google Scholar 

  5. Kaufmann HP, Tobschirbel A (1959) An oligopeptide from linseed. Chem Ber 92:2805–2809

    Article  CAS  Google Scholar 

  6. Wieczorek Z, Bengtsson B, Trojnar J, Siemion IZ (1991) Immunosuppressive activity of cyclolinopeptide A. Pept Res 4:275–783

    CAS  PubMed  Google Scholar 

  7. Kaneda T, Yoshida H, Nakajima Y, Toishi M, Nugroho Alfarius Eko, Morita H (2016) Cyclolinopeptides, cyclic peptides from flaxseed with osteoclast differentiation inhibitory activity. Bioorg Med Chem Lett 26:1760–1761

    Article  CAS  Google Scholar 

  8. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  CAS  Google Scholar 

  9. Loutit JF, Nisbet NW (1982) The origin of osteoclasts. Immunobiology 161:193–203

    Article  CAS  Google Scholar 

  10. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  Google Scholar 

  11. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  Google Scholar 

  12. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colonystimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci 87:4828–4832

    Article  CAS  Google Scholar 

  13. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  CAS  Google Scholar 

  14. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  CAS  Google Scholar 

  15. Arai A, Mizoguchi T, Harada S, Kobayashi Y, Nakamichi Y, Yasuda H, Penninger JM, Yamada K, Udagawa N, Takahashi N (2012) Fos plays an essential role in the upregulation of RANK expression in osteoclastprecursors within the bone microenvironment. J Cell Sci 125:2910–2917

    Article  CAS  Google Scholar 

  16. Kim JH, Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21:233–241

    Article  Google Scholar 

  17. Matsumoto T, Shishido A, Morita H, Itokawa H, Takeya K (2001) Cyclolinopeptides F-I, cyclic peptides from linseed. Phytochemistry 57:251–260

    Article  CAS  Google Scholar 

  18. Kaneda T, Nojima T, Nakagawa M, Ogasawara A, Kaneko H, Sato T, Mano H, Kumegawa M, Hakeda Y (2000) Endogenous production of TGF-beta is essential for osteoclastogenesis induced by a combination of receptor activator of NF-kappa B ligand and macrophage-colony-stimulating factor. J Immunol 165:4254–4263

    Article  CAS  Google Scholar 

  19. Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y (2002) Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs-in IFN-beta-inhibited osteoclast formation. J Biol Chem 277:27880–27886

    Article  CAS  Google Scholar 

  20. Janckila AJ, Takahashi K, Sun SZ, Yam LT (2001) Naphthol-ASBI phosphate as a preferred substrate for tartrate-resistant acid phosphatase isoform 5b. J Bone Miner Res 16:788–793

    Article  CAS  Google Scholar 

  21. Feng X, Teitelbaum SL (2013) Osteoclasts: new Insights. Bone Res 1:11–26

    Article  Google Scholar 

  22. Sherr CJ (1990) Colony-stimulating factor-1 receptor. Blood 75:1–12

    Article  CAS  Google Scholar 

  23. Sato N, Sawada K, Kannonji M, Tarumi T, Sakai N, Ieko M, Sakurama S, Nakagawa S, Yasukouchi T, Krantz SB (1991) Purification of human marrow progenitor cells and demonstration of the direct action of macrophage colony-stimulating factor on colony-forming unit-macrophage. Blood 78:967–974

    Article  CAS  Google Scholar 

  24. Wang ZQ, Ovitt C, Grigoriadis AE, Möhle-Steinlein U, Rüther U, Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360:741–745

    Article  CAS  Google Scholar 

  25. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448

    Article  CAS  Google Scholar 

  26. Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24:184–187

    Article  CAS  Google Scholar 

  27. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749

    Article  CAS  Google Scholar 

  28. Fleischmann A, Hafezi F, Elliott C, Remé CE, Rüther U, Wagner EF (2000) Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 14:2695–2700

    Article  CAS  Google Scholar 

  29. Hirsch S, Austyn JM, Gordon S (1981) Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J Exp Med 154:713–725

    Article  CAS  Google Scholar 

  30. Ma WJ, Cheng S, Campbell C, Wright A, Furneaux H (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271:8144–8151

    Article  CAS  Google Scholar 

  31. Raghavan A, Robison RL, McNabb J, Miller CR, Williams DA, Bohjanen PR (2001) HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J Biol Chem 276:47958–47965

    Article  CAS  Google Scholar 

  32. Glazier MG, Bowman MA (2001) A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 161:1161–1172

    Article  CAS  Google Scholar 

  33. Rietjens IMCM, Louisse J, Beekmann K (2017) The potential health effects of dietary phytoestrogens. Br J Pharmacol 174:1263–1280

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Morita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneda, T., Nakajima, Y., Koshikawa, S. et al. Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKL-induced osteoclastogenesis via downergulation of RANK expression. J Nat Med 73, 504–512 (2019). https://doi.org/10.1007/s11418-019-01292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01292-w

Keywords

Navigation