Skip to main content
Log in

Analyses of the possible anti-tumor effect of yokukansan

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The Kampo medicine yokukansan (YKS) has a wide variety of properties such as anxiolytic, anti-inflammatory and analgesic effects, and is also thought to regulate tumor suppression. In this study, we investigated the anti-tumor effect of YKS. We used Lewis lung carcinoma (LLC)-bearing mice that were fed food pellets containing YKS and then performed a fecal microbiota analysis, a microarray analysis for microRNAs (miRNAs) and an in vitro anti-tumor assay. The fecal microbiota analysis revealed that treatment with YKS partly reversed changes in the microbiota composition due to LLC implantation. Furthermore, a miRNA array analysis using blood serum showed that treatment with YKS restored the levels of miR-133a-3p/133b-3p, miR-1a-3p and miR-342-3p following LLC implantation to normal levels. A TargetScan analysis revealed that the epidermal growth factor receptor 1 signaling pathway is one of the major target pathways for these miRNAs. Furthermore, treatment with YKS restored the levels of miR-200b-3p and miR-200c-3p, a recognized mediator of cancer progression and controller of emotion, in the hypothalamus of mice bearing LLC. An in vitro assay revealed that a mixture of pachymic acid, saikosaponins a and d and isoliquiritigenin, which are all contained in YKS, exerted direct and additive anti-tumor effects. The present findings constitute novel evidence that YKS may exert an anti-tumor effect by reversing changes in the fecal microbiota and miRNAs circulating in the blood serum and hypothalamus, and the compounds found in YKS could have direct and additive anti-tumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CF:

Control food

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

EGFR:

Epidermal growth factor receptor

HPA:

Hypothalamic–pituitary–adrenal

IL-6:

Interleukin-6

LLC:

Lewis lung carcinoma

miRNAs:

MicroRNAs

N.Acc:

Nucleus accumbens

NSCLC:

Non-small cell lung cancer

NT:

Non-tumor

YKS:

Yokukansan

YKSF:

YKS-treated food

References

  1. Sarkar DK, Murugan S, Zhang C, Boyadjieva N (2012) Regulation of cancer progression by β-endorphin neuron. Cancer Res 72:836–840. https://doi.org/10.1158/0008-5472.CAN-11-3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Powell ND, Tarr AJ, Sheridan JF (2013) Psychosocial stress and inflammation in cancer. Brain Behav Immun 30:41–47. https://doi.org/10.1016/j.bbi.2012.06.015

    Article  CAS  Google Scholar 

  3. Cao DD, Li L, Chan WY (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 17:842. https://doi.org/10.3390/ijms17060842

    Article  CAS  PubMed Central  Google Scholar 

  4. Imai S, Saeki M, Yanase M, Horiuchi H, Abe M, Narita M, Kuzumaki N, Suzuki T, Narita M (2011) Change in MicroRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain. J Neurosci 31:15294–15299. https://doi.org/10.1523/JNEUROSCI.0921-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saisu H, Igarashi K, Narita M, Ikegami D, Kuzumaki N, Wajima K, Nakagawa T, Narita M (2015) Neuropathic pain-like stimuli change the expression of ribosomal proteins in the amygdala: genome-wide search for a “pain-associated anxiety-related factor”. Jpn J Pharm Palliat Care Sci 8:47–57

    Google Scholar 

  6. Zhang HF, Xu LY, Li EM (2014) A family of pleiotropically acting microRNAs in cancer progression, miR-200: potential cancer therapeutic targets. Curr Pharm Des 20:1896–1903

    Article  CAS  PubMed  Google Scholar 

  7. Narita M, Shimura E, Nagasawa A, Aiuchi T, Suda Y, Hamada Y, Ikegami D, Iwasawa C, Arakawa K, Igarashi K, Kuzumaki N, Yoshioka Y, Ochiya T, Takeshima H, Ushijima T, Narita M (2017) Chronic treatment of non-small-cell lung cancer cells with gefitinib leads to an epigenetic loss of epithelial properties associated with reductions in microRNA-155 and -200c. PLoS One 12:e0172115. https://doi.org/10.1371/journal.pone.0172115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13:800–812. https://doi.org/10.1038/nrc3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nelson MH, Diven MA, Huff LW, Paulos CM (2015) Harnessing the microbiome to enhance cancer immunotherapy. J Immunol Res. https://doi.org/10.1155/2015/368736

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zitvogel L, Ayyoub M, Routy B, Kroemer G (2016) Microbiome and anticancer immunosurveillance. Cell 165:276–287. https://doi.org/10.1016/j.cell.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Erdman SE, Poutahidis T (2017) Gut microbiota modulate host immune cells in cancer development and growth. Free Radic Biol Med 105:28–34. https://doi.org/10.1016/j.freeradbiomed.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  12. Ikarashi Y, Mizoguchi K (2016) Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 166:84–95. https://doi.org/10.1016/j.pharmthera.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi T, Tsujimatsu A, Kumamoto H, Izumi T, Ohmura Y, Yoshida T, Yoshioka M (2012) Anxiolytic effects of yokukansan, a traditional Japanese medicine, via serotonin 5-HT1A receptors on anxiety-related behaviors in rats experienced aversive stress. J Ethnopharmacol 143:533–539. https://doi.org/10.1016/j.jep.2012.07.007

    Article  PubMed  Google Scholar 

  14. Fujiwara H, Han Y, Ebihara K, Awale S, Araki R, Yabe T, Matsumoto K (2017) Daily administration of yokukansan and keishito prevents social isolation-induced behavioral abnormalities and down-regulation of phosphorylation of neuroplasticity-related signaling molecules in mice. BMC Complement Altern Med 17:195. https://doi.org/10.1186/s12906-017-1710-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tamano H, Kan F, Oku N, Takeda A (2010) Ameliorative effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient young mice. Brain Res Bull 83:351–355. https://doi.org/10.1016/j.brainresbull.2010.08.013

    Article  PubMed  Google Scholar 

  16. Katahira H, Sunagawa M, Watanabe D, Kanada Y, Katayama A, Yamauchi R, Takashima M, Ishikawa S, Hisamitsu T (2017) Antistress effects of Kampo medicine “Yokukansan” via regulation of orexin secretion. Neuropsychiatr Dis Treat 13:863–872. https://doi.org/10.2147/NDT.S129418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J (2013) Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflamm 10:145. https://doi.org/10.1186/1742-2094-10-145

    Article  CAS  Google Scholar 

  18. Ebisawa S, Andoh T, Shimada Y, Kuraishi Y (2015) Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain. Evid Based Complement Alternat Med 2015:870687. https://doi.org/10.1155/2015/870687

    Article  PubMed  PubMed Central  Google Scholar 

  19. Agalioti T, Giannou AD, Krontira AC, Kanellakis NI, Kati D, Vreka M, Pepe M, Spella M, Lilis I, Zazara DE, Nikolouli E, Spiropoulou N, Papadakis A, Papadia K, Voulgaridis A, Harokopos V, Stamou P, Meiners S, Eickelberg O, Snyder LA, Antimisiaris SG, Kardamakis D, Psallidas I, Marazioti A, Stathopoulos GT (2017) Mutant KRAS promotes malignant pleural effusion formation. Nat Commun 16:15205. https://doi.org/10.1038/ncomms15205

    Article  CAS  Google Scholar 

  20. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot L, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2017) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97. https://doi.org/10.1126/science.aan3706

    Article  CAS  PubMed  Google Scholar 

  21. Ueki T, Mizoguchi K, Yamaguchi T, Nishi A, Ikarashi Y, Hattori T, Kase Y (2015) Yokukansan increases 5-HT1A receptors in the prefrontal cortex and enhances 5-HT1A receptor agonist-induced behavioral responses in socially isolated mice. Evid Based Complement Alternat Med 25:25. https://doi.org/10.1155/2015/726471

    Article  Google Scholar 

  22. Mizoguchi K, Ikarashi Y (2017) Multiple psychopharmacological effects of the traditional Japanese Kampo medicine Yokukansan, and the brain regions it affects. Front Pharmacol 8:149. https://doi.org/10.3389/fphar.2017.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishi A, Yamaguchi T, Sekiguchi K, Imamura S, Tabuchi M, Kanno H, Nakai Y, Hashimoto K, Ikarashi Y, Kase Y (2012) Geissoschizine methyl ether, an alkaloid in Uncaria hook, is a potent serotonin1A receptor agonist and candidate for amelioration of aggressiveness and sociality by yokukansan. Neuroscience 207:124–136. https://doi.org/10.1016/j.neuroscience.2012.01.037

    Article  CAS  PubMed  Google Scholar 

  24. Fiorentino L, Ancoli-Israel S (2007) Sleep dysfunction in patients with cancer. Curr Treat Options Neurol 9:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084. https://doi.org/10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, Qian X, Zhong G (2016) Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 7:85318–85331. https://doi.org/10.18632/oncotarget.13347

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ciardiello F, Tortora G (2003) Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 39:1348–1354

    Article  CAS  PubMed  Google Scholar 

  28. Forcella M, Oldani M, Epistolio S, Freguia S, Monti E, Fusi P, Frattini M (2017) Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: effect of the plasma membrane-associated NEU3. PLoS One 12:e0187289. https://doi.org/10.1371/journal.pone.0187289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morodomi Y, Okamoto T, Maehara Y (2017) Reply to “EGFR mutation in patients with lung adenosquamous cell carcinoma”. Ann Surg Oncol 24(3):676. https://doi.org/10.1245/s10434-017-6181-z

    Article  PubMed  Google Scholar 

  30. Bethune G, Bethune D, Ridgway N, Xu Z (2010) Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis 2:48–51

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pancewicz-Wojtkiewicz J (2016) Epidermal growth factor receptor and notch signaling in non-small-cell lung cancer. Cancer Med 5:3572–3578. https://doi.org/10.1002/cam4.944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

  33. Brantley EC, Benveniste EN (2008) Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6:675–684. https://doi.org/10.1158/1541-7786.MCR-07-2180

    Article  CAS  PubMed  Google Scholar 

  34. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155. https://doi.org/10.1038/nn.4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meister B, Herzer S, Silahtaroglu A (2013) MicroRNAs in the hypothalamus. Neuroendocrinology 98:243–253. https://doi.org/10.1159/000355619

    Article  CAS  PubMed  Google Scholar 

  36. Geaghan M, Cairns MJ (2015) MicroRNA and posttranscriptional dysregulation in psychiatry. Biol Psychiatry 78:231–239. https://doi.org/10.1016/j.biopsych.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  37. Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W (2012) Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 123:477–490. https://doi.org/10.1111/j.1471-4159.2012.07925.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Wang Y, Yang GY (2013) MicroRNAs in cerebral ischemia. Stroke Res Treat 2013:276540. https://doi.org/10.1155/2013/276540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu J, Chen Z, Tian J, Meng Z, Ju M, Wu G, Tian Z (2017) miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1. Int J Mol Med 40:90–100. https://doi.org/10.3892/ijmm.2017.2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li C, Liu Y, Liu D, Jiang H, Pan F (2016) Dynamic alterations of miR-34c expression in the hypothalamus of male rats after early adolescent traumatic stress. Neural Plast 2016:5249893. https://doi.org/10.1155/2016/5249893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST (2014) microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J Neurochem 130:388–401. https://doi.org/10.1111/jnc.12731

    Article  CAS  PubMed  Google Scholar 

  42. Beclin C, Follert P, Stappers E, Barral S, Nathalie C, de Chevigny A, Magnone V, Lebrigand K, Bissels U, Huylebroeck D, Bosio A, Barbry P, Seuntjens E, Cremer H (2016) miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Sci Rep 6:35729. https://doi.org/10.1038/srep35729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gapter L, Wang Z, Glinski J, NG KY (2005) Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem Biophys Res Commun 332(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  44. Ling H, Zhang Y, Ng KY, Chew EH (2011) Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-kappaB-dependent matrix metalloproteinase-9 expression. Breast Cancer Res Treat 126(3):609–620. https://doi.org/10.1007/s10549-010-0929-5

    Article  CAS  PubMed  Google Scholar 

  45. Chen S, Swanson K, Eliaz I, McClintick JN, Sandusky GE, Sliva D (2015) Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress. PLoS One 10(4):e0122270. https://doi.org/10.1371/journal.pone.0122270

    Article  CAS  Google Scholar 

  46. Ma J, Liu J, Lu C, Cai D (2015) Pachymic acid induces apoptosis via activating ROS-dependent JNK and ER stress pathways in lung cancer cells. Cancer Cell Int 15:78. https://doi.org/10.1186/s12935-015-0230-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu C, Ma J, Cai D (2017) Pachymic acid inhibits the tumorigenicity of gastric cancer cells by the mitochondrial pathway. Anticancer Drugs 28(2):170–179. https://doi.org/10.1097/CAD.0000000000000449

    Article  CAS  PubMed  Google Scholar 

  48. Kim BM, Hong SH (2011) Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis 16(2):184–197. https://doi.org/10.1007/s10495-010-0557-x

    Article  CAS  PubMed  Google Scholar 

  49. Chen JC, Chang NW, Chung JG, Chen KC (2003) Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. Am J Chin Med 31(3):363–377

    Article  CAS  PubMed  Google Scholar 

  50. Hsu YL, Kuo PL, Chiang LC, Lin CC (2004) Involvement of p53, nuclear factor kappaB and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines. Cancer Lett 213(2):213–221

    Article  CAS  PubMed  Google Scholar 

  51. Hsu YL, Kuo PL, Lin CC (2004) The proliferative inhibition and apoptotic mechanism of Saikosaponin D in human non-small cell lung cancer A549 cells. Life Sci 75(10):1231–1242

    Article  CAS  PubMed  Google Scholar 

  52. Liu RY, Li JP (2014) Saikosaponin-d inhibits proliferation of human undifferentiated thyroid carcinoma cells through induction of apoptosis and cell cycle arrest. Eur Rev Med Pharmacol Sci 18(17):2435–2443

    PubMed  Google Scholar 

  53. Li Y, Cai T, Zhang W, Zhu W, Lv S (2017) Effects of Saikosaponin D on apoptosis in human U87 glioblastoma cells. Mol Med Rep 16(2):1459–1464. https://doi.org/10.3892/mmr.2017.6765

    Article  CAS  PubMed  Google Scholar 

  54. Hsu YL, Kuo PL, Chiang LC, Lin CC (2004) Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer a549 cells. Clin Exp Pharmacol Physiol 31(7):414–418

    Article  CAS  PubMed  Google Scholar 

  55. Ii T, Satomi Y, Katoh D, Shimada J, Baba M, Okuym Y, Nishino H, Kitamura N (2004) Induction of cell cycle arrest and p21(CIP1/WAF1) expression in human lung cancer cells by isoliquiritigenin. Cancer Lett 207(1):27–35

    Article  CAS  PubMed  Google Scholar 

  56. Jung SK, Lee MH, Lim DY, Kim JE, Singh P, Lee SY, Jeong CH, Lim TG, Chen H, Chi YI, Kundu JK, Lee NH, Lee CC, Cho YY, Bode AM, Lee KW, Dong Z (2014) Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J Biol Chem 289(52):35839–35848. https://doi.org/10.1074/jbc.M114.585513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Kazamatsuri, M. Nakahama, W. Eguchi, and J.L. Waddington for their support. This work was supported by grants from MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018, S1411019.

Author information

Authors and Affiliations

Authors

Contributions

Minoru N designed the research. CH, YH, TK, NK, KA, HM and Michiko N performed experiments. YH, TK, KA, HM and KI analyzed the data. HK, NK, Michiko N and Minoru N supervised the research. CH, MK and Minoru N wrote the paper.

Corresponding authors

Correspondence to Cheolsun Han or Minoru Narita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Kawata, M., Hamada, Y. et al. Analyses of the possible anti-tumor effect of yokukansan. J Nat Med 73, 468–479 (2019). https://doi.org/10.1007/s11418-019-01283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01283-x

Keywords

Navigation