Skip to main content
Log in

Natural CAC chemopreventive agents from Ilex rotunda Thunb.

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Colitis-associated cancer (CAC) is one of the most serious complications of inflammatory bowel disease. The pathogenesis of CAC is complicated and so far elusive, and the anti-inflammatory effect does not assure CAC preventive activity, making it difficult to discover CAC preventive drugs. In this study, we report the CAC preventive effect of the ethyl acetate (EIR) of Ilex rotunda Thunb., a traditional Chinese herbal medicine being clinically used to treat intestinal disease. We also report the results of screening for CAC preventive agents from EIR via a nuclear factor-kappa B (NF-κB) translocation model in Caco2 cells, since activated NF-κB can be used by tumor cells at the early stage of tumorigenesis. Twenty-four components were isolated from EIR and identified by multiple chromatography and spectral analysis. MTT experiments in IEC-6 and RAW264.7 cells showed that all 24 compounds were toxic-free to normal cell lines. Furthermore, compound rotundic acid (RA) (19) exhibited an inhibitory effect on LPS-induced NF-κB translocation in Caco2 cells. Moreover, RA did not induce apoptosis in Caco2 tumor cells while possessing an anti-inflammatory effect both in immune and intestinal epithelium cells (RAW264.7 and IEC-6 cells, respectively). Removing RA (19) and its 28-O-glucopyranoside (17) from EIR definitely undermined the in vivo CAC preventive activity of EIR. Therefore, the current study suggested that RA (19) could be a potential therapeutic agent against CAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Breynaert C, Vermeire S, Rutgeerts F, Van AG (2008) Dysplasia and colorectal cancer in inflammatory bowel disease: a result of inflammation or an intrinsic risk? Acta Gastroenterol Belg 71:367–372

    CAS  PubMed  Google Scholar 

  3. Grivennikov SI (2015) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35:229–244

    Article  CAS  Google Scholar 

  4. Lakatos PLLL (2008) Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol 14:3937–3947

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baumgart DC, Sandborn WJ (2012) Crohn’s disease. Lancet 380:1590–1605

    Article  PubMed  Google Scholar 

  6. Danese S, Fiocchi C (2011) Medical progress. N Engl J Med 365:1713–1725

    Article  CAS  PubMed  Google Scholar 

  7. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Y, Zhou J, Yi Feng, Chen LY, Zhang LH, Yang F, Zha HR, Wang XX, Han X, Shu C, Song Y, Li QJ, Guo B, Zhu B (2018) Control of intestinal inflammation, colitis-associated tumorigenesis, and macrophage polarization by fibrinogen-like protein2. Front Immunol 9:87–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yang B, Zhu JP, Rong L, Jing Jin, Cao D, Hui Li, Zhou XH, Zhao ZX (2018) Triterpenoids with antiplatelet aggregation activity from Ilex rotunda. Phytochemistry 145:179–186

    Article  CAS  PubMed  Google Scholar 

  10. Lu XH (2014) Pharmaceutical king tree. Iron Holly Guangxi Forest 1:28–29

    Google Scholar 

  11. Hu ZY, Tang M, Zhang QH, Zhao LC (2018) Research progress on chemical composition and pharmacological action of Ilex rotunda. J Changchun Norm Univ 37:69–74

    Google Scholar 

  12. Huo X, Liu D, Gao L, Li Y (2016) Flavonoids extracted from licorice prevents colitis-associated carcinogenesis in AOM/DSS mouse model. Int J Mol Sci 17:1343–1370

    Article  PubMed Central  CAS  Google Scholar 

  13. Blennerhassett MG, Bovell FM, Lourenssen S, Mchugh KM (1999) Characteristics of inflammation-induced hypertrophy of rat intestinal smooth muscle cell. Dig Dis Sci 44:1265–1272

    Article  CAS  PubMed  Google Scholar 

  14. Kyung-Sook C, Se-Yun C, Seong-Soo R, Minho L, Hyo-Jin A (2018) Chemopreventive effect of Aster glehni on inflammation-induced colorectal carcinogenesis in mice. Nutrients 10:202–213

    Article  CAS  Google Scholar 

  15. Rajan TS, Giacoppo S, Iori R, Rosalind G, Nicola D, Grass G, Pollastro F, Bramanti P, Mazzon E (2016) Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia 112:104–105

    Article  CAS  PubMed  Google Scholar 

  16. Tao L, Zhang F, Hao L, Wu J, Jia J, Liu JY, Zeng LT, Zhen X (2014) 1-O-Tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-κB and JNK activation in microglia cells. Pharmacol Sci 125:364–374

    Article  CAS  Google Scholar 

  17. Chun SC, Jee SY, Sang GL, Park SJ, Lee JR, Sang CK (2007) Anti-inflammatory activity of the methanol extract of moutan cortex in LPS-activated raw264.7 cells. Evid Based Complement Altern Med 4:327–333

    Article  Google Scholar 

  18. colitis-associated cancer. Cancers (Basel) 3:2811–2826

    Article  CAS  Google Scholar 

  19. Zhang D, Mi M, Jiang F, Sun Y, Li Y, Yang L, Fan L, Li Q, Meng J, Yue Z, Liu L, Mei Q (2015) Apple polysaccharide reduces NF-Kb mediated colitis-associated colon carcinogenesis. Nutr Cancer 67:177–190

    Article  CAS  PubMed  Google Scholar 

  20. Li WK, Xiao PG, Chen ZL (1999) Study on chemical constituents of Huanghua Yuanzhi Chin. J Tradit Chin Med 24:477–479

    CAS  Google Scholar 

  21. Zhao AH, Zhao QS, Li RT, Sun HD (2004) Chemical composition of kidney tea. J Plant Diver Resour 26:563–568

    CAS  Google Scholar 

  22. Wang W, Yang CR, Zhang YJ (2009) Phenolic ingredients in the fruit of the fruit. Plant Diver Resour 31:284–288

    CAS  Google Scholar 

  23. Ming CL, Tang SA, Duan HQ (2010) Chemical consitituents from Onychium japonicum. Chin Tradit Herb Drugs 41:685–688

    Google Scholar 

  24. Hu J, Zhang WD, Liu RH, Zhang C, Shen YH, Xu XH, Liang MJ, Li HL (2006) Chemical constituents in root of Zanthoxylum nitidum. China J Chin Mater Med 31:1689–1691

    CAS  Google Scholar 

  25. Liu R, Yu SS, Pei YH (2009) Chemical constituents from leaves of Albizia chinensis. China J Chin Mater Med 34:2063–2066

    CAS  Google Scholar 

  26. Zhao D, Wu TY, Guan YQ, Ma GX, Zhang J, Shi LL (2017) Chemical constituents from roots of Stelleropsis tianschanica. China J Chin Mater Med 9:3379–3384

    Google Scholar 

  27. Wang CH, Wei PL, Yan SK, Jin HZ, Zhang DW (2014) Study on chemical constituents of ethyl acetate fraction of Minnan. Nat Prod Res Dev 26:33–37

    Google Scholar 

  28. Mao CM, Li SS, Xu QM, Yang SL (2016) Study on the chemical constituents of the stalk. Chin Herb Med 47:891–896

    CAS  Google Scholar 

  29. Meerungrueang W, Panichayupakaranant P (2014) Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata. Pharm Microbiol 52:1104–1109

    CAS  Google Scholar 

  30. Wu Z, Ouyang M, Yang C (1999) Polyphenolic constituents of Salvia sonchifolia. Acta Bot Yunnanica 21:393–398

    CAS  Google Scholar 

  31. Li YS, Tian Y, Guo P, Yang JQ, Xu XD (2014) Synthesis and biological activity of caffeate derivatives. Chin Herb Med 45:3538–3542

    CAS  Google Scholar 

  32. Jakupovic J, Zdero C, Paredes L, Bohlmann F (1988) Sesquiterpene glycosides and other constituents from osteospermum species. Phytochemistry 27:2881–2886

    Article  CAS  Google Scholar 

  33. Kitagawa I, Wei H, Nagao S, Mahmud T, Kobayashi M, Uji T, Shibuya H (1996) Chem Pharm Bull 44:1162–1167

    Article  CAS  Google Scholar 

  34. He W, Zhang YM (2012) Study on chemical constituents of stalk. Chin Herb Med 43:1276–1279

    CAS  Google Scholar 

  35. Yu Y, Gao W, Yi Dai, Li XX, Li JM, Yao XS (2010) Study on lignans in gardenia. Chin Herb Med 41:509–514

    CAS  Google Scholar 

  36. Sun H, Zhang XQ, Cai Y, Han WL, Wang Y, Ye WC (2009) Study on chemical constituents of Ilex rotunda Thunb. Chem Ind For Prod 29:111–114

    CAS  Google Scholar 

  37. Nguyen HT, Ho DV, Vo HQ, Le HQ, Nquyen HM, Kodama T, Ito T, Morita H, Raal A (2017) Antibacterial activities of chemical constituents from the aerial parts of Hedyotis pilulifera. Pharm Microbiol 55:787–791

    CAS  Google Scholar 

  38. Xia WZ, Cui BS, Li S (2016) Study on the chemical constituents of Sijiqing. Chin Herb Med 47:1272–1277

    CAS  Google Scholar 

  39. Wang L, Zhang CF, Layba M, Zhang M (2011) Study on the constituents of triterpenoids and sterols from broad-leaved ebony in West Africa. Chin J Tradit Chin Med 18:2511–2514

    Google Scholar 

  40. Yao ZR, Li J, Zhou SX, Zhang W, Tu PF (2009) Triterpenoids in the sacral leaves. Chin J Tradit Chin Med 34:999–1001

    CAS  Google Scholar 

  41. Liu WJ, Peng YY, Chen H, Liu XF, Liang JY, Sun JB (2017) Triterpenoid saponins with potential cytotoxic activities from the root bark of Ilex rotunda Thunb. Chem Biodivers 2017:14

    Google Scholar 

  42. Li S, Zhao J, Wang W (2015) Seven new triterpenoids from the aerial parts of Ilex cornuta, and protective effects against H2O2-induced myocardial cell injury. Phytochem Lett 14:178–184

    Article  CAS  Google Scholar 

  43. Ratnam NM, Peterson JM, Talbert EE, Ladner KJ, Rajasekera PV, Schmidt CR, Dillhoff ME, Swanson BJ, Haverick E, Kladney RD, Williams TM, Leone GW, Wang DJ, Guttridge DC (2017) NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development. J Clin Invest 127:3796–3809

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G (2015) NF-κB in cancer therapy. Arch Toxicol 89:711–731

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported partially by the National Natural Science Foundation of China (Grant nos. 81673323, 81872768, 81628012); the Open Research Funding of Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use (2018KF05); and the young and middle-aged teachers’ career development support plan of Shenyang Pharmaceutical University (ZCQ201701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Chen or Ning Li.

Ethics declarations

Conflict of interest

The authors declare that they have no disclosures to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhang, L., Li, W. et al. Natural CAC chemopreventive agents from Ilex rotunda Thunb.. J Nat Med 73, 456–467 (2019). https://doi.org/10.1007/s11418-019-01281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01281-z

Keywords

Navigation