Skip to main content
Log in

Hydroxyobtustyrene protects neuronal cells from chemical hypoxia-induced cell death

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Hydroxyobtustyrene is a derivative of cinnamyl phenol isolated from Dalbergia odorifera T. Chen. The heartwood, known as ‘JiangXiang’, is a traditional Chinese medicine. Previous studies showed that hydroxyobtustyrene inhibited the biosynthesis of prostaglandins, which are mediators of neuronal cell death in ischemia. However, it currently remains unclear whether hydroxyobtustyrene protects neurons against ischemic stress. In the present study, we investigated the protective effects of hydroxyobtustyrene against sodium cyanide (NaCN)-induced chemical ischemia. Hippocampal neurons were cultured from the cerebral cortices of E18 Wistar rats. The effects of hydroxyobtustyrene on neuronal survival and trophic effects were estimated under lower and higher cell density conditions. After the treatment of 1 mM NaCN with or without hydroxyobtustyrene, an MTT assay, Hoechst staining, and immunocytochemistry for cyclooxygenase (COX)-2 were performed. Hydroxyobtustyrene increased cell viability under lower, but not normal density conditions. Neither the neurite number nor the length was influenced by hydroxyobtustyrene. NaCN significantly decreased viability and increased fragmentation in cell nuclei, and these changes were prevented by hydroxyobtustyrene. Moreover, NaCN increased the number of COX-2-positive neurons, and this was significantly prevented by the co-treatment with hydroxyobtustyrene. Therefore, hydroxyobtustyrene protected cultured hippocampal neurons against NaCN-induced chemical ischemia, which may be mediated by the inhibition of COX-2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M, Brooker SJ, Brown AS, Buckle G, Budke CM, Carabin H, Coffeng LE, Fevre EM, Furst T, Halasa YA, Jasrasaria R, Johns NE, Keiser J, King CH, Lozano R, Murdoch ME, O’Hanlon S, Pion SD, Pullan RL, Ramaiah KD, Roberts T, Shepard DS, Smith JL, Stolk WA, Undurraga EA, Utzinger J, Wang M, Murray CJ, Naghavi M (2014) The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 8:e2865

    Article  PubMed  PubMed Central  Google Scholar 

  2. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13:11753–11772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Way JL (1984) Cyanide intoxication and its mechanism of antagonism. Annu Rev Pharmacol Toxicol 24:451–481

    Article  PubMed  CAS  Google Scholar 

  4. Carella F, Grassi MP, Savoiardo M, Contri P, Rapuzzi B, Mangoni A (1988) Dystonic-Parkinsonian syndrome after cyanide poisoning: clinical and MRI findings. J Neurol Neurosurg Psychiatry 51:1345–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Valenzuela R, Court J, Godoy J (1992) Delayed cyanide induced dystonia. J Neurol Neurosurg Psychiatry 55:198–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rosenow F, Herholz K, Lanfermann H, Weuthen G, Ebner R, Kessler J, Ghaemi M, Heiss WD (1995) Neurological sequelae of cyanide intoxication—the patterns of clinical, magnetic resonance imaging, and positron emission tomography findings. Ann Neurol 38:825–828

    Article  PubMed  CAS  Google Scholar 

  7. Rosenberg NL, Myers JA, Martin WR (1989) Cyanide-induced parkinsonism: clinical, MRI, and 6-fluorodopa PET studies. Neurology 39:142–144

    Article  PubMed  CAS  Google Scholar 

  8. Gunasekar PG, Sun PW, Kanthasamy AG, Borowitz JL, Isom GE (1996) Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-methyl-d-aspartate receptor activation. J Pharmacol Exp Ther 277:150–155

    PubMed  CAS  Google Scholar 

  9. Bhattacharya R, Lakshmana Rao PV (2001) Pharmacological interventions of cyanide-induced cytotoxicity and DNA damage in isolated rat thymocytes and their protective efficacy in vivo. Toxicol Lett 119:59–70

    Article  PubMed  CAS  Google Scholar 

  10. Mills EM, Gunasekar PG, Li L, Borowitz JL, Isom GE (1999) Differential susceptibility of brain areas to cyanide involves different modes of cell death. Toxicol Appl Pharmacol 156:6–16

    Article  PubMed  CAS  Google Scholar 

  11. Prabhakaran K, Li L, Borowitz JL, Isom GE (2002) Cyanide induces different modes of death in cortical and mesencephalon cells. J Pharmacol Exp Ther 303:510–519

    Article  PubMed  CAS  Google Scholar 

  12. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  PubMed  CAS  Google Scholar 

  13. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  PubMed  CAS  Google Scholar 

  14. Gunasekar PG, Borowitz JL, Isom GE (1998) Cyanide-induced generation of oxidative species: involvement of nitric oxide synthase and cyclooxygenase-2. J Pharmacol Exp Ther 285:236–241

    PubMed  CAS  Google Scholar 

  15. Ohanian SH, Borsos T (1975) Lysis of tumor cells by antibody and complement. II. Lack of correlation between amount of C4 and C3 fixed and cell lysis. J Immunol 114:1292–1295

    PubMed  CAS  Google Scholar 

  16. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229

    Article  PubMed  CAS  Google Scholar 

  17. Candelario-Jalil E, Fiebich BL (2008) Cyclooxygenase inhibition in ischemic brain injury. Curr Pharm Des 14:1401–1418

    Article  PubMed  CAS  Google Scholar 

  18. Ikeda-Matsuo Y, Tanji H, Narumiya S, Sasaki Y (2011) Inhibition of prostaglandin E2 EP3 receptors improves stroke injury via anti-inflammatory and anti-apoptotic mechanisms. J Neuroimmunol 238:34–43

    Article  PubMed  CAS  Google Scholar 

  19. Sun S, Zeng X, Zhang D, Guo S (2015) Diverse fungi associated with partial irregular heartwood of Dalbergia odorifera. Sci Rep 5:8464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Goda Y, Kiuchi F, Shibuya M, Sankawa U (1992) Inhibitors of prostaglandin biosynthesis from Dalbergia odorifera. Chem Pharm Bull (Tokyo) 40:2452–2457

    Article  CAS  Google Scholar 

  21. Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci Res 55:352–360

    Article  PubMed  CAS  Google Scholar 

  22. Iwai T, Iinuma Y, Kodani R, Oka J (2008) Neuromedin U inhibits inflammation-mediated memory impairment and neuronal cell-death in rodents. Neurosci Res 61:113–119

    Article  PubMed  CAS  Google Scholar 

  23. Yu X, An L (2002) A serum- and antioxidant-free primary culture model of mouse cortical neurons for pharmacological screen and studies of neurotrophic and neuroprotective agents. Cell Mol Neurobiol 22:197–206

    Article  PubMed  CAS  Google Scholar 

  24. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  PubMed  CAS  Google Scholar 

  25. Kaneko A, Sankai Y (2014) Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix. PLoS One 9:e102703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fujita R, Yoshida A, Mizuno K, Ueda H (2001) Cell density-dependent death mode switch of cultured cortical neurons under serum-free starvation stress. Cell Mol Neurobiol 21:317–324

    Article  PubMed  CAS  Google Scholar 

  27. Zhou J, Tang XC (2002) Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett 526:21–25

    Article  PubMed  CAS  Google Scholar 

  28. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Modulation of the oxidative stress and inflammatory response by PPAR-γ agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530:70–80

    Article  PubMed  CAS  Google Scholar 

  29. Topol EJ (2004) Failing the public health—rofecoxib, Merck, and the FDA. N Engl J Med 351:1707–1709

    Article  PubMed  CAS  Google Scholar 

  30. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M, Adenoma Prevention with Celecoxib Study I (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080

    Article  PubMed  CAS  Google Scholar 

  31. FitzGerald GA (2003) COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2:879–890

    Article  PubMed  CAS  Google Scholar 

  32. Hewett SJ, Bell SC, Hewett JA (2006) Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 112:335–357

    Article  PubMed  CAS  Google Scholar 

  33. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12:698–714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ichiro Oka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwai, T., Obara, K., Ito, C. et al. Hydroxyobtustyrene protects neuronal cells from chemical hypoxia-induced cell death. J Nat Med 72, 915–921 (2018). https://doi.org/10.1007/s11418-018-1224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1224-8

Keywords

Navigation