Advertisement

Journal of Natural Medicines

, Volume 72, Issue 3, pp 793–797 | Cite as

Quantification of terpene trilactones in Ginkgo biloba with a 1H NMR method

  • Tingfu Liang
  • Takuya Miyakawa
  • Jinwei Yang
  • Tsutomu Ishikawa
  • Masaru Tanokura
Note
  • 189 Downloads

Abstract

Ginkgo biloba L. has been used as a herbal medicine in the traditional treatment of insufficient blood flow, memory deficits, and cerebral insufficiency. The terpene trilactone components, the bioactive agents of Ginkgo biloba L., have also been reported to exhibit useful functionality such as anti-inflammatory and neuroprotective effects. Therefore, in the present research, we attempted to analyze quantitatively the terpene trilactone components in Ginkgo biloba leaf extract, with quantitative 1H NMR (qNMR) and obtained almost identical results to data reported using HPLC. Application of the qNMR method for the analysis of the terpene trilactone contents in commercial Ginkgo extract products, such as soft gel capsules and tablets, produced the same levels noted in package labels. Thus, qNMR is an alternative method for quantification of the terpene trilactone components in commercial Ginkgo extract products.

Keywords

Ginkgo biloba NMR Quantification Soft gel capsule Terpene trilactone 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Leistner E, Drewke C (2010) Ginkgo biloba and ginkgotoxin. J Nat Prod 73:86–92CrossRefPubMedGoogle Scholar
  2. 2.
    Pharmacopoeia Commission of the People’s Republic of China (2015) Pharmacopoeia of the People’s Republic of China. China Medical Science and Technology Press, Beijing, p 316Google Scholar
  3. 3.
    Mullaicharam A (2013) A review on evidence based practice of Ginkgo biloba in brain health. Int J Chem Pharm Anal 1:24–30Google Scholar
  4. 4.
    Burns NR, Bryan J, Nettelbeck T (2006) Ginkgo biloba: no robust effect on cognitive abilities or mood in healthy young or older adults. Hum Psychopharmacol 21:27–37CrossRefPubMedGoogle Scholar
  5. 5.
    Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M (2015) Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci.  https://doi.org/10.1186/s40780-015-0014-7 Google Scholar
  6. 6.
    Nishida S, Satoh H (2004) Comparative vasodilating actions among terpenoids and flavonoids contained in Ginkgo biloba extract. Clin Chim Acta 339:129–133CrossRefPubMedGoogle Scholar
  7. 7.
    Li Y, Wu Y, Yao X, Hao F, Yu C, Bao Y, Wu Y, Song Z, Sun Y, Zheng L, Wang G, Huang Y, Sun Y, Li Y (2017) Ginkgolide A ameliorates LPS-induced inflammatory responses in vitro and in vivo. Int J Mol Sci 18:794.  https://doi.org/10.3390/ijms18040794 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wu F, Shi W, Zhou G, Yao H, Xu C, Xiao W, Wu J, Wu X (2016) Ginkgolide B functions as a determinant constituent of Ginkgolides in alleviating lipopolysaccharide-induced lung injury. Biomed Pharmacother 81:71–78CrossRefPubMedGoogle Scholar
  9. 9.
    Liou CJ, Lai XY, Chen YL, Wang CL, Wei CH, Huang WC (2015) Ginkgolide C suppresses adipogenesis in 3T3-L1 adipocytes via the AMPK signaling pathway. Evid Based Complement Altern Med.  https://doi.org/10.1155/2015/298635 Google Scholar
  10. 10.
    Chandrasekaran K, Mehrabian Z, Spinnewyn B, Drieu K, Fiskum G (2001) Neuroprotective effects of bilobalide, a component of the Ginkgo biloba extract (EGb 761), in gerbil global brain ischemia. Brain Res 922:282–292CrossRefPubMedGoogle Scholar
  11. 11.
    van Beek TA (2005) Ginkgolides and bilobalide: their physical, chromatographic and spectroscopic properties. Bioorg Med Chem 13:5001–5012CrossRefPubMedGoogle Scholar
  12. 12.
    van Beek TA, Lelyveld GP (1992) Concentration of ginkgolides and bilobalide in Ginkgo biloba leaves in relation to the time of year. Planta Med 58:413–416CrossRefPubMedGoogle Scholar
  13. 13.
    van Beek TA, Montoro P (2009) Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A 1216:2002–2032CrossRefPubMedGoogle Scholar
  14. 14.
    Croom E, Pace R, Paletti A, Sardone N, Gray D (2007) Single-laboratory validation for the determination of terpene lactones in Ginkgo biloba dietary supplement crude materials and finished products by high-performance liquid chromatography with evaporative light-scattering detection. J AOAC Int 90:647–658PubMedPubMedCentralGoogle Scholar
  15. 15.
    López-Gutiérrez N, Romero-González R, Martínez Vidal JL, Garrido Frenich A (2016) Quality control evaluation of nutraceutical products from Ginkgo biloba using liquid chromatography coupled to high resolution mass spectrometry. J Pharm Biomed Anal 121:151–160CrossRefPubMedGoogle Scholar
  16. 16.
    Krzek J, Czekaj JS, Rzeszutko W, Ekiert RJ (2007) Validation of capillary gas chromatographic method for determination of bilobalide and ginkgolides A, B, C in Ginkgo biloba dry and liquid extracts. Acta Pol Pharm 64:303–310PubMedGoogle Scholar
  17. 17.
    Carrier DJ, Chauret N, Mancini M, Coulombe P, Neufeld R, Weber M, Archambault J (1991) Detection of ginkgolide A in Ginkgo biloba cell cultures. Plant Cell Rep 10:256–259CrossRefPubMedGoogle Scholar
  18. 18.
    Wei F, Furihata K, Miyakawa T, Tanokura M (2014) A pilot study of NMR-based sensory prediction of roasted coffee bean extracts. Food Chem 152:363–369CrossRefPubMedGoogle Scholar
  19. 19.
    Kodani Y, Miyakawa T, Komatsu T, Tanokura M (2017) NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. Sci Rep 7:1297CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wei F, Furihata K, Zhang M, Miyakawa T, Tanokura M (2016) Use of NMR-based metabolomics to chemically characterize the roasting process of chicory root. J Agric Food Chem 64:6459–6465CrossRefGoogle Scholar
  21. 21.
    Agnolet S, Jaroszewski JW, Verpoorte R, Staerk D (2010) H NMR-based metabolomics combined with HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations. Metabolomics 6:292–302CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liang T, Wei F, Lu Y, Kodani Y, Nakada M, Miyakawa T, Tanokura M (2015) Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J Agric Food Chem 63:683–691CrossRefPubMedGoogle Scholar
  23. 23.
    Hu F, Furihata K, Kato Y, Tanokura M (2007) Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. J Agric Food Chem 55:4307–4311CrossRefPubMedGoogle Scholar
  24. 24.
    Choi YH, Choi HK, Hazekamp A, Bermejo P, Schilder Y, Erkelens C, Verpoorte R (2003) Quantitative analysis of bilobalide and ginkgolides from Ginkgo biloba leaves and Ginkgo products using (1)H-NMR. Chem Pharm Bull (Tokyo) 51:158–161CrossRefGoogle Scholar
  25. 25.
    Li CY, Lin CH, Wu CC, Lee KH, Wu TS (2004) Efficient 1H nuclear magnetic resonance method for improved quality control analyses of Ginkgo constituents. J Agric Food Chem 52:3721–3725CrossRefPubMedGoogle Scholar
  26. 26.
    Napolitano JG, Gödecke T, Rodríguez-Brasco MF, Jaki BU, Chen SN, Lankin DC, Pauli GF (2012) The tandem of full spin analysis and qHNMR for the quality control of botanicals exemplified with Ginkgo biloba. J Nat Prod 75:238–248CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Japan Health Food & Nutrition Food Association (2009) Quality specification and standard for health food: Ginkgo biloba extract (unpublished)Google Scholar
  28. 28.
    Pauli GF, Chen SN, Simmler C, Lankin DC, Gödecke T, Jaki BU, Friesen JB, McAlpine JB, Napolitano JG (2014) Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay. J Med Chem 57:9220–9231CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nishizaki Y, Tada A, Ishizuki K, Ito Y, Onoda A, Sugimoto N, Akiyama H (2015) Development of a novel method for quantifying quassin and neoquassin in Jamaica quassia extracts using the molar absorption coefficient ratio. Shokuhin Eiseigaku Zasshi 56:185–193CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka R, Inagaki R, Sugimoto N, Akiyama H, Nagatsu A (2017) Application of a quantitative 1H-NMR (1H-qNMR) method for the determination of geniposidic acid and acteoside in Plantaginis semen. J Nat Med 71:315–320CrossRefPubMedGoogle Scholar
  31. 31.
    Wei F, Furihata K, Koda M, Hu F, Miyakawa T, Tanokura M (2012) Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition. J Agric Food Chem 60:1005–1012CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Tingfu Liang
    • 1
  • Takuya Miyakawa
    • 2
  • Jinwei Yang
    • 1
  • Tsutomu Ishikawa
    • 1
  • Masaru Tanokura
    • 2
  1. 1.Tokiwa Phytochemical Co. LtdSakuraJapan
  2. 2.Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations