Skip to main content
Log in

Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

In a previous study, we found that both synthetic 3-O-methylquercetin (3MQ) and 3,4′,7-O-trimethylquercetin (34′7TMQ) increased extracellular melanin content. 34′7TMQ increased the activity of melanogenic enzymes by stimulating the p38 pathway and the expression of microphthalmia-associated transcription factor (MITF). In contrast, 3MQ increased the activity of melanogenic enzymes without the involvement of MITF, which suggests that 3MQ inhibits the degradation of melanogenic enzymes. In the present study, we investigated the effects of 3MQ and 34′7TMQ on melanogenesis in normal human melanocytes and using a commercial three-dimensional (3D) skin model system. Both 3MQ and 34′7TMQ elongated the dendrites of normal human melanocytes from a Caucasian donor, but did not stimulate melanogenesis in the melanocytes. In the 3D skin model, which included melanocytes from an Asian donor, 3MQ and 34′7TMQ increased and elongated the melanocytes and showed a tendency to stimulate melanogenesis. These results suggest that 3MQ and 34′7TMQ could be put to practical use in skin care products and agents aimed at preventing hair graying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Sánchez-Ferrer Á, Neptuno-Rodríguez-López J, García-Cánovas F, García-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta—Protein Struct Mol 1247:1–11. https://doi.org/10.1016/0167-4838(94)00204-t

    Article  Google Scholar 

  2. Cooksey CJ, Garratt PJ, Land EJ et al (1998) Tyrosinase kinetics: failure of the auto-activation mechanism of monohydric phenol oxidation by rapid formation of a quinomethane intermediate. Biochem J 333:685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M et al (2016) Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J Dermatol Sci 84:169–177. https://doi.org/10.1016/J.JDERMSCI.2016.08.004

    Article  PubMed  Google Scholar 

  4. Wang H, Pan Y, Tang X, Huang Z (2006) Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT Food Sci Technol 39:496–502. https://doi.org/10.1016/j.lwt.2005.04.001

    Article  CAS  Google Scholar 

  5. Oh EY, Jang JY, Choi YH et al (2010) Inhibitory effects of 1-O-methyl-fructofuranose from Schisandra chinensis fruit on melanogenesis in B16F0 melanoma cells. J Ethnopharmacol 132:219–224. https://doi.org/10.1016/j.jep.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  6. Kim SS, Kim MJ, Choi YH et al (2013) Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac J Trop Biomed 3:617–622. https://doi.org/10.1016/S2221-1691(13)60125-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lan WC, Tzeng CW, Lin CC et al (2013) Prenylated flavonoids from Artocarpus altilis: antioxidant activities and inhibitory effects on melanin production. Phytochemistry 89:78–88. https://doi.org/10.1016/j.phytochem.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Guo H, Yang K, Deng F et al (2012) Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 420:799–804. https://doi.org/10.1016/j.bbrc.2012.03.077

    Article  CAS  PubMed  Google Scholar 

  9. Tsuji-Naito K, Hatani T, Okada T, Tehara T (2007) Modulating effects of a novel skin-lightening agent, α-lipoic acid derivative, on melanin production by the formation of DOPA conjugate products. Bioorgan Med Chem 15:1967–1975. https://doi.org/10.1016/j.bmc.2006.12.042

    Article  CAS  Google Scholar 

  10. Yamauchi K, Mitsunaga T, Batubara I (2011) Isolation, identification and tyrosinase inhibitory activities of the extractives from Allamanda cathartica. Nat Resour 2:167–172. https://doi.org/10.4236/nr.2011.23022

    Article  CAS  Google Scholar 

  11. Chiang HM, Chien YC, Wu CH et al (2014) Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem Toxicol 65:129–139. https://doi.org/10.1016/j.fct.2013.12.032

    Article  CAS  PubMed  Google Scholar 

  12. Jang JY, Kim HN, Kim YR et al (2011) Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells. J Ethnopharmacol 137:1207–1214. https://doi.org/10.1016/j.jep.2011.07.047

    Article  CAS  PubMed  Google Scholar 

  13. Batubara I, Darusman LK, Mitsunaga T et al (2010) Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J Biol Sci 10:138–144. https://doi.org/10.3923/jbs.2010.138.144

    Article  CAS  Google Scholar 

  14. Tangke Arung E, Matsubara E, Wijaya Kusuma I et al (2011) Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 82:198–202. https://doi.org/10.1016/j.fitote.2010.09.008

    Article  CAS  Google Scholar 

  15. Ye Y, Chou GX, Wang H et al (2010) Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine 18:32–35. https://doi.org/10.1016/j.phymed.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Ando H, Watabe H, Valencia JC et al (2004) Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function. J Biol Chem 279:15427–15433. https://doi.org/10.1074/jbc.M313701200

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida T, Mori K, He G (1995) Inulavosin, a new thymol dimer with piscicidal activity from Inula nervosa. Heterocycles 41:1923. https://doi.org/10.3987/COM-95-7148

    Article  CAS  Google Scholar 

  18. Fujita H, Motokawa T, Katagiri T et al (2009) Inulavosin, a melanogenesis inhibitor, leads to mistargeting of tyrosinase to lysosomes and accelerates its degradation. J Invest Dermatol 129:1489–1499. https://doi.org/10.1038/jid.2008.376

    Article  CAS  PubMed  Google Scholar 

  19. Yamauchi K, Mitsunaga T, Itakura Y, Batubara I (2015) Extracellular melanogenesis inhibitory activity and the structure–activity relationships of ugonins from Helminthostachys zeylanica roots. Fitoterapia 104:69–74. https://doi.org/10.1016/j.fitote.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  20. Choi MY, Song HS, Hur HS, Sim SS (2008) Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells. Arch Pharm Res 31:1166–1171. https://doi.org/10.1007/s12272-001-1284-4

    Article  CAS  PubMed  Google Scholar 

  21. Hertog MGL, Hollman PCH, Hertog MGL, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. J Agric Food Chem 40:2379–2383. https://doi.org/10.1021/jf00024a011

    Article  CAS  Google Scholar 

  22. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1038/nature05488

    Article  CAS  PubMed  Google Scholar 

  23. Hollman PCH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942. https://doi.org/10.1016/S0278-6915(99)00079-4

    Article  CAS  PubMed  Google Scholar 

  24. Gibellini L, Pinti M, Nasi M et al (2010) Interfering with ROS metabolism in cancer cells: the potential role of quercetin. Cancers (Basel) 2:1288–1311. https://doi.org/10.3390/cancers2021288

    Article  CAS  Google Scholar 

  25. Chen QX, Kubo I (2002) Kinetics of mushroom tyrosinase inhibition by quercetin. J Agric Food Chem 50:4108–4112. https://doi.org/10.1021/jf011378z

    Article  CAS  PubMed  Google Scholar 

  26. Yamauchi K, Mitsunaga T, Batubara I (2013) Novel quercetin glucosides from Helminthostachys zeylanica root and acceleratory activity of melanin biosynthesis. J Nat Med 67:369–374. https://doi.org/10.1007/s11418-012-0672-9

    Article  CAS  PubMed  Google Scholar 

  27. Yamauchi K, Mitsunaga T, Batubara I (2014) Synthesis of quercetin glycosides and their melanogenesis stimulatory activity in B16 melanoma cells. Bioorgan Med Chem 22:937–944. https://doi.org/10.1016/j.bmc.2013.12.062

    Article  CAS  Google Scholar 

  28. Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T (2014) Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorgan Med Chem 22:3331–3340. https://doi.org/10.1016/j.bmc.2014.04.053

    Article  CAS  Google Scholar 

  29. Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T (2015) Quercetin derivatives regulate melanosome transportation via EPI64 inhibition and elongate the cell shape of B16 melanoma cells. Biomed Pharmacother 70:206–212. https://doi.org/10.1016/j.biopha.2015.01.031

    Article  CAS  PubMed  Google Scholar 

  30. Taherkhani N, Gheibi N (2014) Inhibitory effects of quercetin and kaempferol as two propolis derived flavonoids on tyrosinase enzyme. Biotechnol Heal Sci. https://doi.org/10.17795/bhs-22242

    Article  Google Scholar 

  31. Kubo I, Kinst-Hori I, Chaudhuri SK et al (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorgan Med Chem 8:1749–1755. https://doi.org/10.1016/S0968-0896(00)00102-4

    Article  CAS  Google Scholar 

  32. Fujii T, Saito M (2009) Inhibitory effect of quercetin isolated from rose hip (Rosa canina L.) against melanogenesis by mouse melanoma cells. Biosci Biotechnol Biochem 73:1989–1993. https://doi.org/10.1271/bbb.90181

    Article  CAS  PubMed  Google Scholar 

  33. Nagata H, Takekoshi S, Takeyama R et al (2004) Quercetin Enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and in normal human melanocytes. Pigment Cell Res 17:66–73. https://doi.org/10.1046/j.1600-0749.2003.00113.x

    Article  CAS  PubMed  Google Scholar 

  34. Yang YM, Son YO, Lee SA et al (2011) Quercetin inhibits α-MSH-stimulated melanogenesis in B16F10 melanoma cells. Phyther Res 25:1166–1173. https://doi.org/10.1002/ptr.3417

    Article  CAS  Google Scholar 

  35. Kim SS, Choi JM, Kim JW et al (2005) cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. Neuroreport 16:1357–1361

    Article  CAS  PubMed  Google Scholar 

  36. Lepski G, Jannes CE, Nikkhah G (2011) cAMP promotes differentiation of rodent neuronal progenitor cells. Stem Cell Stud 1:9. https://doi.org/10.4081/scs.2011.e9

    Article  CAS  Google Scholar 

  37. Tasaki J, Shibata N, Nishimura O et al (2011) ERK signaling controls blastema cell differentiation during planarian regeneration. Development 138:2417–2427. https://doi.org/10.1242/dev.060764

    Article  CAS  PubMed  Google Scholar 

  38. Nagata Y, Todokoro K (1999) Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood 94:853–863

    CAS  PubMed  Google Scholar 

  39. Ma J, Zhang L, Han W et al (2012) Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res 53:1093–1105. https://doi.org/10.1194/jlr.M024398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hussein A, Al-Wadei N, Takahashi T, Schuller HM (2005) Theophylline stimulates cAMP-mediated signaling associated with growth regulation in human cells from pulmonary adenocarcinoma and small airway epithelia. Int J Oncol 27:155–160

    CAS  PubMed  Google Scholar 

  41. Kuroda TS, Fukuda M (2004) Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol 6:1195–1203. https://doi.org/10.1038/ncb1197

    Article  CAS  PubMed  Google Scholar 

  42. Tamura K, Ohbayashi N, Maruta Y et al (2009) Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol Biol Cell 20(12):2900–2908. https://doi.org/10.1091/mbc.E08-12-1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohbayashi N, Yatsu A, Tamura K, Fukuda M (2012) The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes. Mol Biol Cell 23:669–678. https://doi.org/10.1091/mbc.E11-04-0324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Fellowship from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosei Yamauchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamauchi, K., Mitsunaga, T. Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model. J Nat Med 72, 563–569 (2018). https://doi.org/10.1007/s11418-018-1175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1175-0

Keywords

Navigation