Journal of Natural Medicines

, Volume 72, Issue 1, pp 357–363 | Cite as

Production of an emericellin and its analogues as fungal biological responses for Shimbu-to extract

  • Nobuhiro Inoue
  • Daigo Wakana
  • Hisashi Takeda
  • Takashi Yaguchi
  • Tomoo HosoeEmail author


This research examined the production of fungal metabolites as a biological response to Kampo medicines. Shimbu-to (SMB) is a Kampo medicine composed of five herbal components: peony root (Shakuyaku), ginger (Shokyo), processed aconite root (Bushi), Poria sclerotium (Bukuryo), and Atractylodes lancea rhizomes (Sojutsu). High-performance liquid chromatography (HPLC) analysis of the fungus Aspergillus nidulans CBS 112.46 incubated in potato dextrose broth supplemented with SMB extract revealed emericellin (2) as the major peak and new xanthone analogues 24-hydroxyshamixanthone (1), shamixanthone (3), epishamixanthone (4), pre-shamixanthone (5), and variecoxanthone A (6) as minor peaks. The structure of 1 was determined by detailed analysis of 1D-NMR, 2D-NMR, and MS data. The results suggest that SMB extract regulates the biosynthesis of emericellin and its analogues in A. nidulans. Further investigations revealed that glucose induces the biosynthesis of emericellin and its analogues in A. nidulans in a concentration-dependent manner.


Shimbu-to Aspergillus nidulans Xanthone Emericellin Glucose 



This study was supported by the Japan Society for the Promotion of Science (JSPS; Grant number 15K08005).

Supplementary material

11418_2017_1156_MOESM1_ESM.tif (61 kb)
Fig. S1 HPLC chromatograms of mycelia extracts obtained from A. nidulans cultured on PD broth with supplements indicated below, monitored at UV 300 nm. (a) SMB, (b) CHCl3 lay. (c) AcOEt lay. (d) 1-BuOH lay. (e) H2O lay. (f) none. (TIFF 60 kb)
11418_2017_1156_MOESM2_ESM.tif (33 kb)
Fig. S2 HPLC analysis of emericellin produced by A. nidulans cultured on PDB with SMB. Fractions obtained by column chromatography of the water fraction using a DIAION HP21 column. (TIFF 33 kb)
11418_2017_1156_MOESM3_ESM.tif (40 kb)
Fig. S3 HPLC analysis of sugar with RI detection. (a) SMB H2O Fr., (b) Fructose (tR = 8.4 min), (c) Glucose (tR = 9.0 min), (d) Sucrose (tR = 10.7 min). (TIFF 40 kb)


  1. 1.
    Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438CrossRefGoogle Scholar
  2. 2.
    Miao FP, Liang XR, Liu XH, Ji NY (2014) Aspewentins A-C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. J Nat Prod 77:429–432CrossRefGoogle Scholar
  3. 3.
    Zain ME (2009) Effect of olive oil on secondary metabolite and fatty acid profiles of Penicillium expansum, Aspergillus flavus, A. parasiticus and A. ochraceus. Aust J Basic Appl Sci 3:4274–4280Google Scholar
  4. 4.
    Yu-Ming C, Chien-Kei W, Da-Wei C, Mohamed E, Chi-Ting H, Teigo A, Yoshiteru O, Tusty-Jiuan H, Tsong-Long H, Yang-Chang W, Fang-Rong C (2013) An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii. Bioorg Med Chem 21:3866–3872CrossRefGoogle Scholar
  5. 5.
    Toghueo KRM, Dinkar S, Boyom FF (2016) Stimulation of the production of new volatile and non-volatile metabolites by endophytic Aspergillus niger using small organic chemicals. Curr Res Environ Appl Mycol 6:256–267CrossRefGoogle Scholar
  6. 6.
    Al-Qarawi AA, Abd-Allah EF, Hashem A (2013) Effect of Ephedra alata Decne. on lipids metabolism of Aspergillus flavus link. Bangladesh J Bot 42:45–49CrossRefGoogle Scholar
  7. 7.
    Masayoshi I, Takashi H, Yuichi H, Keiichi F, Tomitake T, Yukiteru K (1975) Emericellin, a new metabolite from Aspergillus nidulans. Agric Biol Chem 39:291–292Google Scholar
  8. 8.
    Kuldip KC, Christopher F, John SEH, Thomas JS, Kenneth Y (1974) The biosynthesis of fungal metabolites part III structure of shamixanthone and tajixanthone, metabolites of Aspergillus variecolor. J Chem Soc Perkin Trans 1:1584–1593Google Scholar
  9. 9.
    Masayoshi I, Takashi H, Yuichi H, Keiichi F, Tomitake T, Yukiteru K (1976) Epishamixanthone, a new metabolite from Aspergillus rugulosus. Agric Biol Chem 40:1051–1052Google Scholar
  10. 10.
    Anindita S, Alexander NF, Kirstin S, Fabian H, Volker S, Pranatchareeya C, Martin W, Martin R, Axel AB, Christian H, Uwe H (2012) Differential expression of silent polyketide biosynthesis gene clusters in chemostat cultures of Aspergillus nidulans. J Biotechnol 160:64–71CrossRefGoogle Scholar
  11. 11.
    Kuldip KC, John SEH, Thomas JS, Kenneth Y (1975) The biosynthesis of fungal metabolites part V structure of variecoxanthones A, B, and C, metabolites of Aspergiiius variecolor; conversion of variecoxanthone A into (±)-De-C-prenylepishamixanthone. J Chem Soc Perkin Trans 1(6):543–548Google Scholar
  12. 12.
    James FS, Ruth E, Jui-Hsiang H, Junko Y, Sofina J, Yi-Ming C, Clay CCW, Berl RO (2011) Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc 133:4010–4017CrossRefGoogle Scholar
  13. 13.
    Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, Fischer R, Calvo AM (2010) Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet Biol 47(12):962–972CrossRefGoogle Scholar
  14. 14.
    Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52:532–537CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Organic ChemistryHoshi UniversityTokyoJapan
  2. 2.Medical Mycology Research Center (MMRC)Chiba UniversityChibaJapan

Personalised recommendations