Journal of Natural Medicines

, Volume 72, Issue 1, pp 118–126 | Cite as

Sansoninto as evidence-based remedial medicine for depression-like behavior

  • Atsushi Sawamoto
  • Satoshi OkuyamaEmail author
  • Yoshiaki Amakura
  • Rie Yamada
  • Morio Yoshimura
  • Mitsunari Nakajima
  • Yoshiko Furukawa
Original Paper


In vitro screening methods using cultured Neuro2a cells to examine the activation (phosphorylation) of extracellular signal-regulated kinase (ERK) 1/2 and promotion of neurite outgrowth revealed that the extracts of 5 Kampo (Japanese traditional) formulations have potential as medicines for the treatment of behavioral abnormalities. Since sansoninto (SAT) extract exerted stronger effects than the other candidates tested, we investigated whether its oral administration ameliorates the pathologies of some mouse models of behavioral impairments. The results obtained suggested that SAT extract exerted anti-depression-like effects in the forced swim test, which may be mediated by the up-regulated expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. They may also be mediated by the enhanced phosphorylation of the cAMP response element-binding protein (CREB) via the mitogen-activated protein kinase (MAPK) cascade and Ca2+/calmodulin-dependent protein kinase II (CaMK II) cascade, a downstream signaling cascade of the N-methyl-d-aspartate (NMDA) receptor. These results indicate that the extract of SAT has potential as a new remedial medicine in the treatment of depression-like behavior.


Kampo medicine Sansoninto Brain-derived neurotrophic factor Depression 



This work was financially supported by Takeda Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11418_2017_1119_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1264 kb)


  1. 1.
    Moschik EC, Mercado C, Yoshino T, Matsuura K, Watanabe K (2012) Usage and attitudes of physicians in Japan concerning traditional Japanese medicine (Kampo medicine): a descriptive evaluation of a representative questionnaire-based survey. Evid Based Complement Alternat Med. doi: 10.1155/2012/139818 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kanno H, Sekiguchi K, Yamaguchi T, Terawaki K, Yuzurihara M, Kase Y, Ikarashi Y (2009) Effect of yokukansan, a traditional Japanese medicine, on social and aggressive behaviour of para-chloroamphetamine-injected rats. J Pharm Pharmacol 61:1249–1256Google Scholar
  3. 3.
    Nakatani Y, Amano T, Yamamoto H, Sakai N, Tsuji M, Takeda H (2017) Yokukansan enhances the proliferation of B65 neuroblastoma. J Tradit Complement Med 7:34–44CrossRefGoogle Scholar
  4. 4.
    Uchida N, Egashira N, Iwasaki K, Ishibashi A, Tashiro R, Nogami A, Manome N, Abe M, Takasaki K, Mishima K, Takata J, Oishi R, Nishimura R, Fujiwara M (2009) Yokukansan inhibits social isolation-induced aggression and methamphetamine-induced hyperlocomotion in rodents. Biol Pharm Bull 32:372–375CrossRefGoogle Scholar
  5. 5.
    Takeyoshi K, Kurita M, Nishino S, Teranishi M, Numata Y, Sato T, Okubo Y (2016) Yokukansan improves behavioral and psychological symptoms of dementia by suppressing dopaminergic function. Neuropsychiatr Dis Treat 12:641–649PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ushiroyama T (2005) Japanese Kampo medicine for women: historical perspectives of Koho-ha school and current concerns in menopausal medicine. Sanpunosinpo 57:131–150Google Scholar
  7. 7.
    Ushiroyama T, Sakuma K, Ueki M (2005) Efficacy of the Kampo medicine Xiong-gui-tiao-xue-yin (Kyuki-chouketsu-in), a traditional herbal medicine, in the treatment of maternity blues syndrome in the postpartum period. Am J Chin Med 33:117–126CrossRefGoogle Scholar
  8. 8.
    Terauchi M, Hiramitsu S, Akiyoshi M, Owa Y, Kato K, Obayashi S, Matsushima E, Kubota T (2014) Effects of the kampo formula Tokishakuyakusan on headaches and concomitant depression in middle-aged women. Evid Based Complement Alternat Med. doi: 10.1155/2014/593560 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kudoh C, Arita R, Honda M, Kishi T, Komatsu Y, Asou H, Mimura M (2015) Effect of ninjin’yoeito, a Kampo (traditional Japanese) medicine, on cognitive impairment and depression in patients with Alzheimer’s disease: 2 years of observation. Psychogeriatrics 16:85–92CrossRefGoogle Scholar
  10. 10.
    Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28:6983–6995CrossRefGoogle Scholar
  11. 11.
    Furukawa Y, Okuyama S, Amakura Y, Watanabe S, Fukata T, Nakajima M, Yoshimura M, Yoshida T (2012) Isolation and characterization of activators of ERK/MAPK from citrus plants. Int J Mol Med Sci 13:1832–1845CrossRefGoogle Scholar
  12. 12.
    Okuyama S, Fukata T, Nishigawa Y, Amakura Y, Yoshimura M, Yoshida T, Nakajima M, Furukawa Y (2013) Citrus flavonoid improves MK-801-induced locomotive hyperactivity: possible relevance to schizophrenia. J Funct Foods 5:2002–2006CrossRefGoogle Scholar
  13. 13.
    Sawamoto A, Okuyama S, Yamamoto K, Amakura Y, Yoshimura M, Nakajima M, Furukawa Y (2016) 3,5,6,7,8,3′,4′-Heptamethoxyflavone, a citrus flavonoid, ameliorates corticosterone-induced depression-like behavior and restores brain-derived neurotrophic factor expression, neurogenesis, and neuroplasticity in the hippocampus. Molecules 21:541. doi: 10.3390/molecules21040541 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nagase H, Yamakuni T, Matsuzaki K, Maruyama Y, Kasahara J, Hinohara Y, Kondo S, Mimaki Y, Sashida Y, Tank AW, Fukunaga K, Ohizumi Y (2005) Mechanism of neurotrophic action of nobiletin in PC12D cells. Biochemistry 44:13683–13691CrossRefGoogle Scholar
  15. 15.
    Kubota K, Sano K, Shiraishi A, Beppu N, Nogami A, Uchida N, Takasaki K, Katsurabayashi S, Mishima K, Nishimura R, Fujiwara M, Iwasaki K (2013) Yokukansan, a traditional Japanese herbal medicine, promotes neurite outgrowth in PC12 cells through the activation of extracellular signal regulated kinase 1/2 and phosphatidylinositol 3-kinase/Akt. J Trad Med 30:102–113Google Scholar
  16. 16.
    Furukawa Y, Watanabe S, Okuyama S, Amakura Y, Yoshimura M, Yoshida T, Nakajima M (2012) Effect of Citrus polymethoxyflavones on neuritogenesis in neuroblastoma cells. Biointerface Res Appl Chem 432–437Google Scholar
  17. 17.
    Hikiami H, Nozaki K, Nagata Y, Nakata S, Nogami T, Obi R, Goto H, Shibahara N, Shimada Y (2008) Biomarkers of endothelial dysfunction are elevated in patients with rheumatoid arthritis with oketsu (blood stasis). J Trad Med 25:103–107Google Scholar
  18. 18.
    Mathew RJ (1994) Cerebral blood flow and metabolism in anxiety and anxiety disorders. Indian J Psychiatry 36:103–120PubMedPubMedCentralGoogle Scholar
  19. 19.
    Starkstein SE, Sabe L, Vázquez S, Tesón A, Petracca G, Chemerinski E, Di Lorenzo G, Leiguarda R (1996) Neuropsychological, psychiatric, and cerebral blood flow findings in vascular dementia and Alzheimer’s disease. Stroke 27:408–414CrossRefGoogle Scholar
  20. 20.
    Liotti M, Mayberg HS, McGinnis S, Brannan SL, Jerabek P (2002) Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am J Psychiatry 159:1830–1840CrossRefGoogle Scholar
  21. 21.
    Yoshii A, Constantine-Paton M, Ip NY (2015) Editorial: cell and molecular signaling, and transport pathways involved in growth factor control of synaptic development and function. Front Synaptic Neurosci 7:8. doi: 10.3389/fnsyn.2015.00008 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298:372–377CrossRefGoogle Scholar
  23. 23.
    Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, Au R, Pikula A, Wolf PA, DeStefano AL, Vasan RS, Seshadri S (2014) Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol 71:55–61CrossRefGoogle Scholar
  24. 24.
    The Ministry of Health, Labour and Welfare (2011) The Japanese pharmacopoeia, 16th ednGoogle Scholar
  25. 25.
    The Ministry of Health, Labour and Welfare (2015) The Japanese standards for non-Pharmacopoeial crude drugsGoogle Scholar
  26. 26.
    Porsolt RD, Bertin A, Jalfre M (1997) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336Google Scholar
  27. 27.
    Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177:245–255CrossRefGoogle Scholar
  28. 28.
    Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093CrossRefGoogle Scholar
  29. 29.
    Shapiro ML, Caramanos Z (1990) NMDA antagonist MK-801 impairs acquisition but not performance of spatial working and reference memory. Psychobiology 18:231–243Google Scholar
  30. 30.
    Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1:602–609CrossRefGoogle Scholar
  31. 31.
    Lučić V, Greif GJ, Kennedy MB (2008) Detailed state model of CaMKII activation and autophosphorylation. Eur Biophys J 38:83–98CrossRefGoogle Scholar
  32. 32.
    Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148CrossRefGoogle Scholar
  33. 33.
    Sun P, Enslen H, Myung PS, Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8:2527–2539CrossRefGoogle Scholar
  34. 34.
    Aydemir O, Deveci A, Taneli F (2005) The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 29:261–265CrossRefGoogle Scholar
  35. 35.
    Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR (2001) BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 14:135–144CrossRefGoogle Scholar
  36. 36.
    Li J, Luo Y, Zhang R, Shi H, Zhu W, Shi J (2015) Neuropeptide trefoil factor 3 reverses depressive-like behaviors by activation of BDNF-ERK-CREB signaling in olfactory bulbectomized rats. Int J Mol Sci 16:28386–28400CrossRefGoogle Scholar
  37. 37.
    Yi JH, Park HJ, Beak SJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH (2015) Danggui-Jakyak-San enhances hippocampal long-term potentiation through the ERK/CREB/BDNF cascade. J Ethnopharmacol 175:481–489CrossRefGoogle Scholar
  38. 38.
    Nogami A, Takasaki K, Kubota K, Yamaguchi K, Kawasaki C, Nakamura K, Fujikawa R, Uchida N, Katsurabayashi S, Mishima K, Nishimura R, Fujiwara M, Iwasaki K (2013) Effect of yokukansan on memory disturbance in an animal model of cerebrovascular dementia. J Tradit Med 30:164–175Google Scholar
  39. 39.
    Saito KI, Umeda S, Kawashima K, Kano Y (2000) Pharmacological properties of traditional medicines. XXVI. Effects of Sansohnin-to on pentobarbital sleep in stressed mice. Biol Pharm Bull 23:76–79CrossRefGoogle Scholar
  40. 40.
    Kira K, Takasaki K, Nagao M, Moriyama H, Ogata A, Morikawa H, Hyakutake Y, Ando N, Nishiyama Y, Kubota K, Katurabayashi S, Mishima K, Uchida N, Nishimura R, Iwasaki K (2015) The effects of sansoninto on the insomnia in socially isolated mice. Med Bull Fukuoka Univ 42:55–61Google Scholar
  41. 41.
    Kawashima K, Saito KI, Yamada A, Obara SI, Ozaki T, Kano Y (1997) Pharmacological properties of traditional medicines. XXIII. Searching for active compounds in the blood and bile of rats after oral administrations of extracts of Sansohnin. Biol Pharm Bull 20:1171–1174CrossRefGoogle Scholar
  42. 42.
    Jung IH, Lee HE, Park SJ, Ahn YJ, Kwon G, Woo H, Lee SY, Kim JS, Jo YW, Jang DS, Kang SS, Ryu JH (2016) Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol Biochem Behav 120:88–94CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  • Atsushi Sawamoto
    • 1
  • Satoshi Okuyama
    • 1
    Email author
  • Yoshiaki Amakura
    • 2
  • Rie Yamada
    • 2
  • Morio Yoshimura
    • 2
  • Mitsunari Nakajima
    • 1
  • Yoshiko Furukawa
    • 1
  1. 1.Department of Pharmacology, Graduate School of Clinical PharmacyMatsuyama UniversityMatsuyamaJapan
  2. 2.Department of Pharmacognosy, Graduate School of Clinical PharmacyMatsuyama UniversityMatsuyamaJapan

Personalised recommendations