Advertisement

Journal of Natural Medicines

, Volume 71, Issue 4, pp 703–710 | Cite as

An overview and comparison of a recombinant antigen-binding fragment and an antigen-binding fragment from a monoclonal antibody against wogonin glucuronide

  • Madan Kumar Paudel
  • Seiichi Sakamoto
  • Hiroyuki Tanaka
  • Satoshi Morimoto
Original Paper

Abstract

Wogonin glucuronide (wogonin 7-O-β-d-glucuronide, Wgn) is widely recognized as a constituent of Scutellariae radix, which is used in Kampo medicines. Wgn has been used for both pharmacological (antifebrile uses and in detoxification) and research purposes. A recombinant antigen-binding fragment (rFab) and an antigen-binding fragment from a monoclonal antibody (mFab) against Wgn were constructed and used in an indirect competitive enzyme-linked immunosorbent assay (icELISA) in this study. The rFab and mFab against Wgn showed both activity and recognition against Wgn. The developed icELISA was validated as a quantitative analytical method to detect Wgn by testing both its utility and its reliability using multiple concentrations of Wgn from S. radix. This approach provides a more economic method to analyze and purify Kampo medicines.

Keywords

Wogonin glucuronide (Wgn) Recombinant antigen-binding fragment (rFab) Indirect competitive enzyme-linked immunosorbent assay (icELISA) Anti-Wgn monoclonal antibody (MAb 315A) Scutellariae radix Scutellaria baicalensis 

Notes

Acknowledgments

This study was supported, in part, by a Grant-in-Aid from KAKENHI, grant number 16K08296, and the research fund of Kyushu University Foundation.

References

  1. 1.
    Kido K, Morinaga O, Shoyama Y, Tanaka H (2008) Quick analysis of baicalin in Scutellariae Radix by enzyme-linked immunosorbent assay using a monoclonal antibody. Talanta 77:346–350CrossRefPubMedGoogle Scholar
  2. 2.
    Paudel MK, Putalun W, Sritularak B, Morinaga O, Shoyama Y, Tanaka H, Morimoto S (2011) Development of a combined technique using a rapid one-step immunochromatographic assay and indirect competitive ELISA for the rapid detection of baicalin. Anal Chim Acta 701:189–193CrossRefPubMedGoogle Scholar
  3. 3.
    Paudel MK, Shirota O, Sasaki-Tabata K, Tanaka H, Sekita S, Morimoto S (2013) Development of an enzyme immunoassay using a monoclonal antibody against the psychoactive diterpenoid salvinorin A. J Nat Prod 76:1654–1660CrossRefPubMedGoogle Scholar
  4. 4.
    Li HB, Jiang Y, Chen F (2004) Separation methods used for Scutellaria baicalensis active components. J Chromatogr B 812:277–290CrossRefGoogle Scholar
  5. 5.
    Li CR, Zhang L, Lin G, Zuo Z (2011) Identification and quantification of baicalein, wogonin, oroxylin A and their major glucuronide conjugated metabolites in rat plasma after oral administration of Radix scutellariae product. J Pharm Biomed Anal 54:750–758CrossRefPubMedGoogle Scholar
  6. 6.
    Paudel MK, Sakamoto S, Huy LV, Tanaka H, Tomofumi M, Akihito T, Morimoto S (2016) Development of an immunoassay using an anti-wogonin glucuronide monoclonal antibody. J Immunoassay Immunochem. doi: 10.1080/15321819.2016.1273236 PubMedGoogle Scholar
  7. 7.
    Paudel MK, Sakamoto S, Van Huy L, Tanaka H, Miyamoto T, Morimoto S (2017) The effect of varying the peptide linker length in a single chain variable fragment antibody against wogonin glucuronide. J Biotechnol 251:47–52CrossRefPubMedGoogle Scholar
  8. 8.
    Wang S, Zheng C, Liu Y, Zheng H, Wang Z (2008) Construction of multiform scFv antibodies using linker peptide. J Genet Genom 35:313–316CrossRefGoogle Scholar
  9. 9.
    Bhattaram VA, Graefe U, Kohlert C, Veit M, Derendorf H (2002) Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine 9:1–33CrossRefPubMedGoogle Scholar
  10. 10.
    Kim YH, Jeong DW, Paek IB, Ji HY, Kim YC, Sohn DH, Lee HS (2006) Liquid chromatography with tandem mass spectrometry for the simultaneous determination of baicalein, baicalin, oroxylin A and wogonin in rat plasma. J Chromatogr B 844:261–267CrossRefGoogle Scholar
  11. 11.
    Chung HJ, Lim SY, Kim IS, Bu YM, Kim HC, Kim DH, Yoo HH (2012) Simultaneous determination of baicalein, baicalin, wogonin, and wogonoside in rat plasma by LC-MS/MS for studying the pharmacokinetics of the standardized extract of Scutellariae Radix. Bull Korean Chem Soc 33:177–182CrossRefGoogle Scholar
  12. 12.
    Zhang L, Xing D, Ding Y, Wang R, Wang X, Du L (2005) A chromatographic method for baicalin quantification in rat thalamus. Biomed Chromatogr 19:494–497CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang L, Xing D, Wang W, Wang R, Du L (2006) Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract. J Ethnopharmacol 103:120–125CrossRefPubMedGoogle Scholar
  14. 14.
    Hou YC, Lin SP, Tsai SY, Ko MH, Chang YC, Chao PD (2011) Flavonoid pharmacokinetics and tissue distribution after repeated dosing of the roots of Scutellaria baicalensis in rats. Planta Med 77:455–460CrossRefPubMedGoogle Scholar
  15. 15.
    Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, Sun Y, Wang Y, Li Y, Long M (2010) Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 38:537–549CrossRefPubMedGoogle Scholar
  16. 16.
    Weiler EW, Zenk MH (1976) Radioimmunoassay for the determination of digoxin and related compounds in Digitalis lanata. Phytochemistry 15:1537–1545CrossRefGoogle Scholar
  17. 17.
    Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Plückthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201:35–55CrossRefPubMedGoogle Scholar
  18. 18.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  19. 19.
    Umetsu M, Tsumoto K, Hara M, Ashish K, Goda S, Adschiri T, Kumagai I (2003) How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. J Biol Chem 278:8979–8987CrossRefPubMedGoogle Scholar
  20. 20.
    Miyaichi Y, Tomimori T (1994) Studies on the constituents of Scutellaria species XVI. On the phenol glycosides of the root of Scutellaria baicalensis Georgi. Nat Med 48:215–218Google Scholar
  21. 21.
    Miyaichi Y, Tomimori T (1995) Studies on the constituents of Scutellaria species XVII. Phenol glycosides of the root of Scutellaria baicalensis Georgi (2). Nat Med 49:350–353Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  • Madan Kumar Paudel
    • 1
  • Seiichi Sakamoto
    • 1
  • Hiroyuki Tanaka
    • 1
  • Satoshi Morimoto
    • 1
  1. 1.Department of Pharmacognosy, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations