Journal of Natural Medicines

, Volume 71, Issue 2, pp 433–441 | Cite as

Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma

  • Bo Li
  • Mei Lu
  • Xin-Xiang Jiang
  • Meng-Xiong Pan
  • Jun-Wu Mao
  • Mei ChenEmail author
Original Paper


Autophagy modulation has been considered a potential therapeutic strategy for oral squamous cell carcinoma (OSCC). A previous study confirmed that baicalein might possess significant anti-carcinogenic activity. However, whether baicalein induces autophagy and its role in cell death in OSCC are still unclear. The aim of this study was to investigate the anticancer activity and molecular targets of baicalein in OSCC in vitro. In this study, we found that baicalein induced significant apoptosis in OSCC cells Cal27. In addition to showing apoptosis induction, we also demonstrated baicalein-induced autophagic response in Cal27 cells. Moreover, pharmacologically or genetically blocking autophagy enhanced baicalein-induced apoptosis, indicating the cytoprotective role of autophagy in baicalein-treated Cal27 cells. Importantly, we found that baicalein triggered reactive oxygen species (ROS) generation in Cal27 cells. Furthermore, N-acetyl-cysteine, a ROS scavenger, abrogated the effects of baicalein on ROS-dependent autophagy. Therefore, we found that baicalein increased autophagy through the promotion of ROS signaling pathways in OSCC. These data also suggest that a strategy of blocking ROS-dependent autophagy to enhance the activity of baicalein warrants further attention for the treatment of OSCC.


Baicalein Autophagy Reactive oxygen species Apoptosis OSCC 


Compliance with ethical standards

Conflict of interest



  1. 1.
    Chi AC, Day TA, Neville BW (2015) Oral cavity and oropharyngeal squamous cell carcinoma—an update. CA Cancer J Clin 65:401–421CrossRefPubMedGoogle Scholar
  2. 2.
    Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C (2015) Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol 33:3235–3242CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Han S, Xu W, Wang Z, Qi X, Wang Y, Ni Y, Shen H, Hu Q, Han W (2016) Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor-kappaB pathways in the oral squamous cell carcinoma microenvironment. Oncotarget 7:37773–37789PubMedPubMedCentralGoogle Scholar
  4. 4.
    Singh S, Singh PP, Roberts LR, Sanchez W (2014) Chemopreventive strategies in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 11:45–54CrossRefPubMedGoogle Scholar
  5. 5.
    Li M, Chen Q, Yu X (2017) Chemopreventive Effects of ROS Targeting in a Murine Model of BRCA1-Deficient Breast Cancer. Cancer Res 77:448–458CrossRefPubMedGoogle Scholar
  6. 6.
    Liu JC, Hao WR, Hsu YP, Sung LC, Kao PF, Lin CF, Wu AT, Yuan KS, Wu SY (2016) Statins dose-dependently exert a significant chemopreventive effect on colon cancer in patients with chronic obstructive pulmonary disease: a population-based cohort study. Oncotarget 7:65270–65283PubMedGoogle Scholar
  7. 7.
    BoseDasgupta S, Das BB, Sengupta S, Ganguly A, Roy A, Dey S, Tripathi G, Dinda B, Majumder HK (2008) The caspase-independent algorithm of programmed cell death in Leishmania induced by baicalein: the role of LdEndoG, LdFEN-1 and LdTatD as a DNA ‘degradesome’. Cell Death Differ 15:1629–1640CrossRefPubMedGoogle Scholar
  8. 8.
    Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H (2016) The fascinating effects of baicalein on cancer: a review. Int J Mol Sci 17(10):1681CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cathcart MC, Useckaite Z, Drakeford C, Semik V, Lysaght J, Gately K, O’Byrne KJ, Pidgeon GP (2016) Anti-cancer effects of baicalein in non-small cell lung cancer in vitro and in-vivo. BMC Cancer 16:707CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lovey J, Nie D, Tovari J, Kenessey I, Timar J, Kandouz M, Honn KV (2013) Radiosensitivity of human prostate cancer cells can be modulated by inhibition of 12-lipoxygenase. Cancer Lett 335:495–501CrossRefPubMedGoogle Scholar
  11. 11.
    Markaverich BM, Crowley J, Rodriquez M, Shoulars K, Thompson T (2007) Tetrahydrofurandiol stimulation of phospholipase A2, lipoxygenase, and cyclooxygenase gene expression and MCF-7 human breast cancer cell proliferation. Environ Health Perspect 115:1727–1731CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chao JI, Su WC, Liu HF (2007) Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther 6:3039–3048CrossRefPubMedGoogle Scholar
  13. 13.
    Ding L, He S, Sun X (2014) HSP70 desensitizes osteosarcoma cells to baicalein and protects cells from undergoing apoptosis. Apoptosis 19:1269–1280CrossRefPubMedGoogle Scholar
  14. 14.
    Staff PO (2015) Correction: baicalein selectively induces apoptosis in activated lymphocytes and ameliorates concanavalin a-induced hepatitis in mice. PLoS One 10:e0117635CrossRefGoogle Scholar
  15. 15.
    Liu B, Jian Z, Li Q, Li K, Wang Z, Liu L, Tang L, Yi X, Wang H, Li C, Gao T (2012) Baicalein protects human melanocytes from H(2)O(2)-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38 MAPK pathway. Free Radic Biol Med 53:183–193CrossRefPubMedGoogle Scholar
  16. 16.
    Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sheng R, Qin ZH (2015) The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin 36:411–420CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z (2013) Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 9:1780–1800CrossRefPubMedGoogle Scholar
  20. 20.
    Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z (2015) SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11:1037–1051CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li M, Pi H, Yang Z, Reiter RJ, Xu S, Chen X, Chen C, Zhang L, Yang M, Li Y, Guo P, Li G, Tu M, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Yu Z, Zhou Z (2016) Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J Pineal Res 61:353–369CrossRefPubMedGoogle Scholar
  22. 22.
    Delaney JR, Patel C, McCabe KE, Lu D, Davis MA, Tancioni I, von Schalscha T, Bartakova A, Haft C, Schlaepfer DD, Stupack DG (2015) A strategy to combine pathway-targeted low toxicity drugs in ovarian cancer. Oncotarget 6:31104–31118PubMedPubMedCentralGoogle Scholar
  23. 23.
    He Z, Agostini M, Liu H, Melino G, Simon HU (2015) p73 regulates basal and starvation-induced liver metabolism in vivo. Oncotarget 6:33178–33190PubMedPubMedCentralGoogle Scholar
  24. 24.
    Buffen K, Oosting M, Quintin J, Ng A, Kleinnijenhuis J, Kumar V, van de Vosse E, Wijmenga C, van Crevel R, Oosterwijk E, Grotenhuis AJ, Vermeulen SH, Kiemeney LA, van de Veerdonk FL, Chamilos G, Xavier RJ, van der Meer JW, Netea MG, Joosten LA (2014) Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog 10:e1004485CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Albini A, DeCensi A, Cavalli F, Costa A (2016) Cancer prevention and interception: a new era for chemopreventive approaches. Clin Cancer Res 22:4322–4327CrossRefPubMedGoogle Scholar
  26. 26.
    White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, Wang H, Luo W, Chen Y, Chen H, Liu Z (2016) AMPK regulates autophagy by phosphorylating BECN1 at Threonine 388. Autophagy 12:1447–1459CrossRefPubMedGoogle Scholar
  28. 28.
    Takahashi Y, Meyerkord CL, Wang HG (2009) Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ 16:947–955CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, Zhang B, Yang B, Li B, Yang H, Wu Y (2015) Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget 6:39839–39854PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21:86–102CrossRefPubMedGoogle Scholar
  31. 31.
    Radogna F, Cerella C, Gaigneaux A, Christov C, Dicato M, Diederich M (2016) Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene 35:3839–3853CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Z, Jiang C, Chen W, Zhang G, Luo D, Cao Y, Wu J, Ding Y, Liu B (2014) Baicalein induces apoptosis and autophagy via endoplasmic reticulum stress in hepatocellular carcinoma cells. Biomed Res Int 2014:732516PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hung KC, Huang HJ, Wang YT, Lin AM (2016) Baicalein attenuates alpha-synuclein aggregation, inflammasome activation and autophagy in the MPP+-treated nigrostriatal dopaminergic system in vivo. J Ethnopharmacol 194:522–529CrossRefPubMedGoogle Scholar
  34. 34.
    Choi EO, Park C, Hwang HJ, Hong SH, Kim GY, Cho EJ, Kim WJ, Choi YH (2016) Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells. Int J Oncol 49:1009–1018PubMedGoogle Scholar
  35. 35.
    Chang HT, Chou CT, Kuo DH, Shieh P, Jan CR, Liang WZ (2015) The mechanism of Ca(2+) movement in the involvement of baicalein-induced cytotoxicity in ZR-75-1 human breast cancer cells. J Nat Prod 78:1624–1634CrossRefPubMedGoogle Scholar
  36. 36.
    Sato D, Kondo S, Yazawa K, Mukudai Y, Li C, Kamatani T, Katsuta H, Yoshihama Y, Shirota T, Shintani S (2013) The potential anticancer activity of extracts derived from the roots of Scutellaria baicalensis on human oral squamous cell carcinoma cells. Mol Clin Oncol 1:105–111PubMedGoogle Scholar
  37. 37.
    Shao BZ, Han BZ, Zeng YX, Su DF, Liu C (2016) The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 37:150–156CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29:2594–2608CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fan TF, Bu LL, Wang WM, Ma SR, Liu JF, Deng WW, Mao L, Yu GT, Huang CF, Liu B, Zhang WF, Sun ZJ (2015) Tumor growth suppression by inhibiting both autophagy and STAT3 signaling in HNSCC. Oncotarget 6:43581–43593PubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu A, Huang L, Guo E, Li R, Yang J, Li A, Yang Y, Liu S, Hu J, Jiang X, Dirsch O, Dahmen U, Sun J (2016) Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats. Sci Rep 6:25042CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fan TF, Wu TF, Bu LL, Ma SR, Li YC, Mao L, Sun ZJ, Zhang WF (2016) Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget 7:59691–59703PubMedGoogle Scholar
  42. 42.
    Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38CrossRefPubMedGoogle Scholar
  43. 43.
    Lightfoot AP, McArdle A, Jackson MJ, Cooper RG (2015) In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis 74:1340–1346CrossRefPubMedGoogle Scholar
  44. 44.
    Ren G, Sha T, Guo J, Li W, Lu J, Chen X (2015) Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med 69:522–530CrossRefPubMedGoogle Scholar
  45. 45.
    Qi Z, Yin F, Lu L, Shen L, Qi S, Lan L, Luo L, Yin Z (2013) Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production. Inflamm Res 62:845–855CrossRefPubMedGoogle Scholar
  46. 46.
    Naveenkumar C, Raghunandhakumar S, Asokkumar S, Devaki T (2013) Baicalein abrogates reactive oxygen species (ROS)-mediated mitochondrial dysfunction during experimental pulmonary carcinogenesis in vivo. Basic Clin Pharmacol Toxicol 112:270–281CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2017

Authors and Affiliations

  • Bo Li
    • 1
  • Mei Lu
    • 1
  • Xin-Xiang Jiang
    • 1
  • Meng-Xiong Pan
    • 1
  • Jun-Wu Mao
    • 1
  • Mei Chen
    • 1
    Email author
  1. 1.Department of Oral and Maxillofacial SurgeryAffiliated Hospital of Guilin Medical UniversityGuilinPeople’s Republic of China

Personalised recommendations