Skip to main content

Tubulin polymerization-stimulating activity of Ganoderma triterpenoids


Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure–activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Cao Y, Wu S-H, Dai Y-C (2012) Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers 56:49–62. doi:10.1007/s13225-012-0178-5

    Article  Google Scholar 

  2. 2.

    Smina TP, Mathew J, Janardhanan KK, Devasagayam TPA (2011) Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ Toxicol Pharmacol 32:438–446. doi:10.1016/j.etap.2011.08.011

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sun J, He H, Bi JX (2004) Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J Agric Food Chem 52:6646–6652. doi:10.1021/jf0495136

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zhu M, Chang Q, Wong LK et al (1999) Triterpene antioxidants from Ganoderma lucidum. Phytother Res 13:529–531

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Weng Y, Xiang L, Matsuura A et al (2010) Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorg Med Chem 18:999–1002. doi:10.1016/j.bmc.2009.12.070

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Fatmawati S, Kurashiki K, Takeno S et al (2009) The inhibitory effect on aldose reductase by an extract of Ganoderma lucidum. Phytother Res 23:28–32. doi:10.1002/ptr.2425

    Article  PubMed  Google Scholar 

  7. 7.

    Guo L, Xie J, Ruan Y et al (2009) Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int Immunopharmacol 9:1175–1182. doi:10.1016/j.intimp.2009.06.005

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Lin Z-B (2005) Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci 99:144–153. doi:10.1254/jphs.CRJ05008X

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Liu J, Shimizu K, Kondo R (2010) The effects of ganoderma alcohols isolated from Ganoderma lucidum on the androgen receptor binding and the growth of LNCaP cells. Fitoterapia 81:1067–1072. doi:10.1016/j.fitote.2010.06.029

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ríos J-L, Andújar I, Recio M-C, Giner R-M (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044. doi:10.1021/np300412h

    Article  PubMed  Google Scholar 

  11. 11.

    Lee J, Hung T (2009) Steroids and triterpenoid from the fruit bodies of Ganoderma lucidum and their cytotoxic activity. Nat Prod Sci 15:173–179

    CAS  Google Scholar 

  12. 12.

    Wu T-S, Shi L-S, Kuo S-C (2001) Cytotoxicity of Ganoderma lucidum triterpenes. J Nat Prod 64:1121–1122. doi:10.1021/np010115w

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Amen YM, Zhu Q, Tran H-B et al (2016) Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells. J Nat Med 70:661–666. doi:10.1007/s11418-016-0976-2

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Amen YM, Zhu Q, Afifi MS et al (2016) New cytotoxic lanostanoid triterpenes from Ganoderma lingzhi. Phytochem Lett. doi:10.1016/j.phytol.2016.07.024

    Google Scholar 

  15. 15.

    Lee MK, Hung TM, Cuong TD et al (2011) Ergosta-7,22-diene-2β,3α,9α-triol from the fruit bodies of Ganoderma lucidum induces apoptosis in human myelocytic HL-60 cells. Phytother Res 25:1579–1585. doi:10.1002/ptr.3447

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Wang J-H, Zhou Y-J, Zhang M et al (2012) Active lipids of Ganoderma lucidum spores-induced apoptosis in human leukemia THP-1 cells via MAPK and PI3 K pathways. J Ethnopharmacol 139:582–589. doi:10.1016/j.jep.2011.11.055

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Chen N-H, Zhong J-J (2009) Ganoderic acid Me induces G1 arrest in wild-type p53 human tumor cells while G1/S transition arrest in p53-null cells. Process Biochem 44:928–933. doi:10.1016/j.procbio.2009.03.018

    CAS  Article  Google Scholar 

  18. 18.

    Tang W, Liu J-W, Zhao W-M et al (2006) Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci 80:205–211. doi:10.1016/j.lfs.2006.09.001

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wu G-S, Lu J-J, Guo J-J et al (2012) Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 83:408–414. doi:10.1016/j.fitote.2011.12.004

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Weng C-J, Chau C-F, Hsieh Y-S et al (2008) Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-kappaB and AP-1. Carcinogenesis 29:147–156. doi:10.1093/carcin/bgm261

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Chang U-M, Li C-H, Lin L-I et al (2006) Ganoderiol F, a ganoderma triterpene, induces senescence in hepatoma HepG2 cells. Life Sci 79:1129–1139. doi:10.1016/j.lfs.2006.03.027

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Li C-H, Chen P-Y, Chang U-M et al (2005) Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci 77:252–265. doi:10.1016/j.lfs.2004.09.045

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Liu J, Shimizu K, Tanaka A et al (2012) Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms. Sci Rep 2:905. doi:10.1038/srep00905

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265. doi:10.1038/nrc1317

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Cheng S, Sliva D (2015) Ganoderma lucidum for cancer treatment: we are close but still not there. Integr Cancer Ther. doi:10.1177/1534735414568721

    Google Scholar 

Download references


This paper is in memory of Mr. Ken Sawai, who always encouraged us to work with Ganoderma lingzhi. We also would like to express our gratitude to Mr. Takashi Sawai for providing some of the compounds used in this study. This work was supported by KAKENHI Grant Number 26660147.

Author information



Corresponding author

Correspondence to Kuniyoshi Shimizu.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

T. Kohno, T. Hai-Bang and Q. Zhu contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohno, T., Hai-Bang, T., Zhu, Q. et al. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids. J Nat Med 71, 457–462 (2017).

Download citation


  • Ganoderma
  • Triterpenes
  • Tubulin polymerization
  • Microtubule
  • Paclitaxel