Journal of Natural Medicines

, Volume 71, Issue 2, pp 397–408 | Cite as

Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents

  • Chao-Jie Chen
  • Zhi-Feng Zhong
  • Zhi-Ming Xin
  • Long-Hui Hong
  • Yan-Ping Su
  • Chang-Xi YuEmail author
Original Paper


Koumine, an active alkaloid of neurotoxic plant Gelsemium, has been focused on its therapeutic uses, especially in central nervous system. Nevertheless, less is known about the neurological effects of koumine, which hampers its potential therapeutic exploitation. Moreover, as the anxiolytic potential of Gelsemium has raised many critical issues, its active principles on the anxiolytic and other neurological effects need to be further investigated. Here, we used functional observation battery (FOB) of mice to systematically measure the neurological effects of koumine at the effective doses, and then further confirmed its anxiolytic properties in open-field test (OFT) of mice and Vogel conflict test (VCT) of rats. Koumine exhibited anxiolytic-like activities but did not affect other autonomic, neurological and physical functions in FOB. Furthermore, koumine released anxiolytic responses and anti-punishment action in a manner similar to diazepam in OFT and VCT, respectively. The results constitutes solid set of fundamental data further demonstrating anxiolytic properties of koumine at the therapeutic doses without inducing adverse neurological effects, which supports the perspectives for the development of safe and effective koumine medicine against pathological anxiety.


Koumine Gelsemium Anxiety Functional observation battery Open field test Vogel conflict test 









Functional observation battery


Open field test


Vogel conflict test











This work was supported by the National Natural Science Foundation of China (No. 81302756), the Research Fund for the Doctoral Program of Higher Education of China (No. 20133518110004), the Natural Science Foundation of Fujian Province of China (No. 2013J05118) and the Ph.D. Programs Foundation of Fujian Medicine University (No. 2011bs003). We would like to thank Ming Liu and Gui-Lin Jin for their assistance.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Rujjanawate C, Kanjanapothi D, Panthong A (2003) Pharmacological effect and toxicity of alkaloids from Gelsemium elegans Benth. J Ethnopharmacol 89:91–95CrossRefPubMedGoogle Scholar
  2. 2.
    Jin GL, Su YP, Liu M, Xu Y, Yang J, Liao KJ, Yu CX (2014) Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)−a review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol 152:33–52CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang JY, Wang YX (2015) Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway. Fitoterapia 100:35–43CrossRefPubMedGoogle Scholar
  4. 4.
    Chou TQ (1931) The Alkaloids of Gelsemium I. Gelsemine and Gelsemicine. Chin J Phys 5:131–140Google Scholar
  5. 5.
    Kitajima M (2007) Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. J Nat Med 61:14–23CrossRefGoogle Scholar
  6. 6.
    Chou TQ (1931) The alkaloids of Chinese Gelsemium Kou-Wen Gelsemium elegans Bth. Chin J Phys 5:345–352Google Scholar
  7. 7.
    Chou TQ (1936) The alkaloids of Chinese Gelsemium Ta-Cha-Yen. Chin J Phys 10:79–84Google Scholar
  8. 8.
    Fang L, Zhou J, Lin Y, Wang X, Sun Q, Li JL, Huang L (2013) Large-scale separation of alkaloids from Gelsemium elegans by pH-zone-refining counter-current chromatography with a new solvent system screening method. J Chromatogr A 1307:80–85CrossRefPubMedGoogle Scholar
  9. 9.
    Chen WL, Yang Y, Wu SS (2011) Determination the content of koumine, gelsemine and humantenmine in Fujian Gelsemium elegant. J Fujian Univ TCM 21:48–50Google Scholar
  10. 10.
    Zhang X, Chen Y, Gao B, Luo D, Wen Y, Ma X (2015) Apoptotic effect of koumine on human breast cancer cells and the mechanism involved. Cell Biochem Biophys 72:411–416CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang L, Huang C, Zhang Z, Wang Z, Lin J (2005) Therapeutic effects of koumine on psoriasis: an experimental study in mice. J First Mil Univ 25:547–549Google Scholar
  12. 12.
    Cai J, Wang W, Lei L, Chi D (2007) An experimental study on anti-stress effect of koumine on mice. J Guangzhou Univ Tradit Chin Med 24:317–319Google Scholar
  13. 13.
    Ling Q, Liu M, Wu M, Xu Y, Yang J, Huang HH, Yu CX (2014) Anti-allodynic and neuroprotective effects of koumine, a Benth alkaloid, in a rat model of diabetic neuropathy. Biol Pharm Bull 37:858–864CrossRefPubMedGoogle Scholar
  14. 14.
    Qiu HQ, Xu Y, Jin GL, Yang J, Liu M, Li S, Yu CX (2015) Koumine enhances spinal cord 3alpha-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain 11:46CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu Y, Qiu HQ, Liu H, Liu M, Huang Z, Yang J, Su Y, Yu CX (2012) Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacol Biochem Behav 101:504–514CrossRefPubMedGoogle Scholar
  16. 16.
    Liu M, Huang HH, Yang J, Su Y, Lin H, Lin L, Liao W, Yu CX (2013) The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology 225:839–851CrossRefPubMedGoogle Scholar
  17. 17.
    Huang HH, Liu M, Chen C, Yu CX (2014) Effects of koumine on the behavior of rat in elevated plus maze. Northwest Pharm J 26:839–851Google Scholar
  18. 18.
    Bellavite P, Magnani P, Zanolin E, Conforti A (2011) Homeopathic doses of Gelsemium sempervirens improve the behavior of mice in response to novel environments. Evid Based Complement Altern Med. doi: 10.1093/ecam/nep139 Google Scholar
  19. 19.
    Bousta D, Soulimani R, Jarmouni I, Belon P, Falla J, Froment N, Younos C (2001) Neurotropic, immunological and gastric effects of low doses of Atropa belladonna L., Gelsemium sempervirens L. and Poumon histamine in stressed mice. J Ethnopharmacol 74:205–215CrossRefPubMedGoogle Scholar
  20. 20.
    Dutt V, Dhar VJ, Sharma A (2010) Antianxiety activity of Gelsemium sempervirens. Pharm Biol 48:1091–1096CrossRefPubMedGoogle Scholar
  21. 21.
    Magnani P, Conforti A, Zanolin E, Marzotto M, Bellavite P (2010) Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology 210:533–545CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bellavite P, Magnani P, Marzotto M, Conforti A (2009) Assays of homeopathic remedies in rodent behavioural and psychopathological models. Homeopathy 98:208–227CrossRefPubMedGoogle Scholar
  23. 23.
    Bellavite P, Magnani P, Conforti A, Marzotto M, Zanolin M (2011) Response to a comment by Luigi Cervo and Valter Torri on: “Dose–effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice” (Magnani P, et al, Psychopharmacology, 2010). Psychopharmacology 220:441–442CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cervo L, Torri V (2012) Comment on:“Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice” (Magnani P, Conforti A, Zanolin E, Marzotto M and Bellavite P, Psychopharmacology, 2010). Psychopharmacology 220:439–440CrossRefPubMedGoogle Scholar
  25. 25.
    Chirumbolo S (2011) Gelsemine and Gelsemium sempervirens L. Extracts in animal behavioral test: comments and related biases. Front Neurol 2:31PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chirumbolo S (2012) Plant-derived extracts in the neuroscience of anxiety on animal models: biases and comments. Int J Neurosci 122:177–188CrossRefPubMedGoogle Scholar
  27. 27.
    Chirumbolo S (2015) On Gelsemium and complementary and alternative medicine (CAM) in anxiety and experimental neurology. Neurol Ther 4:1–10CrossRefPubMedGoogle Scholar
  28. 28.
    Paris A, Schmidlin S, Mouret S, Hodaj E, Marijnen P, Boujedaini N, Polosan M, Cracowski JL (2012) Effect of Gelsemium 5CH and 15CH on anticipatory anxiety: a phase III, single-centre, randomized, placebo-controlled study. Fundam Clin Pharmacol 26:751–760CrossRefPubMedGoogle Scholar
  29. 29.
    Cryan JF, Sweeney FF (2011) The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 164:1129–1161CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Moser VC (2011) Functional assays for neurotoxicity testing. Toxicol Pathol 39:36–45CrossRefPubMedGoogle Scholar
  31. 31.
    Moser VC, McDaniel KL, Phillips PM (1991) Rat strain and stock comparisons using a functional observational battery: baseline values and effects of amitraz. Toxicol Appl Pharmacol 108:267–283CrossRefPubMedGoogle Scholar
  32. 32.
    Su YP, Shen J, Xu Y, Zheng M, Yu CX (2011) Preparative separation of alkaloids from Gelsemium elegans Benth. using pH-zone-refining counter-current chromatography. J Chromatogr A 1218:3695–3698CrossRefPubMedGoogle Scholar
  33. 33.
    Brain PF, Nowell NW (1969) Some behavioral and endocrine relationships in adult male laboratory mice subjected to open field and aggression tests. Physiol Behav 4:945–947CrossRefGoogle Scholar
  34. 34.
    Marusich JA, Grant KR, Blough BE, Wiley JL (2012) Effects of synthetic cathinones contained in “Bath Salts” on motor behavior and a functional observational battery in mice. Neurotoxicology 33:1305–1313CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Moscardo E, Maurin A, Dorigatti R, Champeroux P, Richard S (2007) An optimised methodology for the neurobehavioural assessment in rodents. J Pharmacol Toxicol Methods 56:239–255CrossRefPubMedGoogle Scholar
  36. 36.
    Redfern WS, Strang I, Storey S, Heys C, Barnard C, Lawton K, Hammond TG, Valentin JP (2005) Spectrum of effects detected in the rat functional observational battery following oral administration of non-CNS targeted compounds. J Pharmacol Toxicol Methods 52:77–82CrossRefPubMedGoogle Scholar
  37. 37.
    Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33CrossRefPubMedGoogle Scholar
  38. 38.
    Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21:1–7CrossRefPubMedGoogle Scholar
  39. 39.
    Moreira FA, Aguiar D, Guimaraes FS (2006) Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry 30:1466–1471CrossRefPubMedGoogle Scholar
  40. 40.
    Jastrzebska-Wiesek M, Siwek A, Partyka A, Kubacka M, Mogilski S, Wasik A, Kolaczkowski M, Wesolowska A (2014) Pharmacological evaluation of the anxiolytic-like effects of EMD 386088, a partial 5-HT6 receptor agonist, in the rat elevated plus-maze and Vogel conflict tests. Neuropharmacology 85:253–262CrossRefPubMedGoogle Scholar
  41. 41.
    Menendez L, Lastra A, Hidalgo A, Baamonde A (2002) Unilateral hot plate test: a simple and sensitive method for detecting central and peripheral hyperalgesia in mice. J Neurosci Methods 113:91–97CrossRefPubMedGoogle Scholar
  42. 42.
    Denenberg VH (1969) Open-field bheavior in the rat: what does it mean? Ann N Y Acad Sci 159:852–859CrossRefPubMedGoogle Scholar
  43. 43.
    Brunner SM, Farzi A, Locker F, Holub BS, Drexel M, Reichmann F, Lang AA, Mayr JA, Vilches JJ, Navarro X, Lang R, Sperk G, Holzer P, Kofler B (2014) GAL3 receptor KO mice exhibit an anxiety-like phenotype. Proc Natl Acad Sci USA 111:7138–7143CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chi DB, Lei LS, Yang HX, Sun LS (2004) General pharmacology of koumine parenteral solution. J First Mil Med Univ 24:32–34Google Scholar
  45. 45.
    Chen CJ, Xin ZM, Lin J, Zhang SH, Ye LX, Su YP, Yu CX (2014) Effect of koumine on spontaneous locomotor, coordinated locomotor and subthreshold-dose barbital-induced hypnosis in mice. Fujian Med Univ 48:13–15Google Scholar
  46. 46.
    Rogers DC, Jones DN, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105:207–217CrossRefPubMedGoogle Scholar
  47. 47.
    Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962CrossRefPubMedGoogle Scholar
  48. 48.
    Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25:235–260CrossRefPubMedGoogle Scholar
  49. 49.
    Millan MJ, Brocco M (2003) The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 463:67–96CrossRefPubMedGoogle Scholar
  50. 50.
    Ohl F (2005) Animal models of anxiety. In: Ströhle A (ed) Handbook of experimental pharmacology. Springer, Berlin, pp 35–69Google Scholar
  51. 51.
    Crawley J (1999) Evaluating anxiety in rodents. In: Crusio W, Gerlai R (eds) Handbook of molecular genetic techniques for brain and behavior research. Techniques in the behavioral and neural sciences. Elsevier, Amsterdam, pp 667–673CrossRefGoogle Scholar
  52. 52.
    Culpepper L (2002) Generalized anxiety disorder in primary care: emerging issues in management and treatment. J Clin Psychiatry 63:35–42PubMedGoogle Scholar
  53. 53.
    Wittchen HU, Kessler RC, Beesdo K, Krause P, Hofler M, Hoyer J (2002) Generalized anxiety and depression in primary care: prevalence, recognition, and management. J Clin Psychiatry 63:24–34PubMedGoogle Scholar
  54. 54.
    Du XB, Dai YH, Zhang CL, Lu SL, Liu ZG (1982) Study on gelsemium alkaloids—I. Structure of gelsenicine. Acta Chim Sinica 40:1137–1141Google Scholar
  55. 55.
    Zhou YP, Xu W, Chen XY (1995) Toxicity and respiratory inhibition of humantenmine. Chin J Pharmacol Toxicity 9:69–72Google Scholar
  56. 56.
    Chou TQ (1931) The Toxicity of Gelsemium. Exp Biol Med (Maywood) 28:789–790CrossRefGoogle Scholar
  57. 57.
    Boyer P (2000) Do anxiety and depression have a common pathophysiological mechanism? Acta Psychiatr Scand (Suppl) 406:24–29CrossRefGoogle Scholar
  58. 58.
    Faravelli C, Lo Sauro C, Lelli L, Pietrini F, Lazzeretti L, Godini L, Benni L, Fioravanti G, Talamba GA, Castellini G, Ricca V (2012) The role of life events and HPA axis in anxiety disorders: a review. Curr Pharm Des 18:5663–5674CrossRefPubMedGoogle Scholar
  59. 59.
    Dallman MF, Akana SF, Levin N, Walker CD, Bradbury MJ, Suemaru S, Scribner KS (1994) Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann N Y Acad Sci 746:22–31CrossRefPubMedGoogle Scholar
  60. 60.
    Schule C, Nothdurfter C, Rupprecht R (2014) The role of allopregnanolone in depression and anxiety. Prog Neurobiol 113:79–87CrossRefPubMedGoogle Scholar
  61. 61.
    Gunn BG, Cunningham L, Mitchell SG, Swinny JD, Lambert JJ, Belelli D (2015) GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Front Neuroendocrinol 36:28–48CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Venard C, Boujedaini N, Mensah-Nyagan AG, Patte-Mensah C (2011) Comparative analysis of gelsemine and Gelsemium sempervirens activity on neurosteroid allopregnanolone formation in the spinal cord and limbic system. Evid Based Complement Altern Med. doi: 10.1093/ecam/nep083 Google Scholar
  63. 63.
    Zhang JY, Gong N, Huang JL, Guo LC, Wang YX (2013) Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal alpha3 glycine receptors. Pain 154:2452–2462CrossRefPubMedGoogle Scholar
  64. 64.
    Venard C, Boujedaini N, Belon P, Mensah-Nyagan AG, Patte-Mensah C (2008) Regulation of neurosteroid allopregnanolone biosynthesis in the rat spinal cord by glycine and the alkaloidal analogs strychnine and gelsemine. Neuroscience 153:154–161CrossRefPubMedGoogle Scholar
  65. 65.
    Chen CJ, Zhong ZF, Xie X, Chen HZ, Yu CX (2016) Discussion on the anxiolytic effect of koumine for the isolated rats and its mechanism. China Med Herald 13:8–12CrossRefGoogle Scholar
  66. 66.
    Zhong ZF, Chen CJ, Xu Y, Yu CX (2016) The anxiolytic effects of koumine and its mechanisms associated with neurosteroids and HPA axis. Chin J Pharm Toxicol 30:482Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2017

Authors and Affiliations

  • Chao-Jie Chen
    • 1
  • Zhi-Feng Zhong
    • 2
  • Zhi-Ming Xin
    • 1
  • Long-Hui Hong
    • 1
  • Yan-Ping Su
    • 3
  • Chang-Xi Yu
    • 1
    • 2
    Email author
  1. 1.Fujian Center for Safety Evaluation of New DrugFujian Medical UniversityFuzhouPeople’s Republic of China
  2. 2.Department of Pharmacology, College of PharmacyFujian Medical UniversityFuzhouPeople’s Republic of China
  3. 3.Department of Pharmacochemistry, College of PharmacyFujian Medical UniversityFuzhouPeople’s Republic of China

Personalised recommendations