Advertisement

Journal of Natural Medicines

, Volume 71, Issue 2, pp 449–456 | Cite as

Stereo- and region-specific biotransformation of physapubescin by four fungal strains

  • Chongyue Qiu
  • Ting Yuan
  • Dejuan Sun
  • Suyu Gao
  • Lixia ChenEmail author
Note
  • 359 Downloads

Abstract

Biotransformations of physapubescin (1) were performed by four fungal strains—Mucor subtilissimus AS 3.2454, Mucor polymorphosporus AS 3.3443, Aspergillus niger AS 3.795, and Syncephalastrum racemosum AS 3.264. Four metabolites were prepared in the biotransformation process of 1, and their structures were elucidated as 15α-acetoxy-5,6β:22,26:24,25-triepoxy-26α-hydroxy-3β-methoxy 4β-hydroxyergost-1-one (2), 15α-acetoxy-5,6β:22,26-diepoxy-4β,24β,25α,26(α, β)-tetrahydroxyergost-3β-methoxy-1-one (3a/3b), 15α-acetoxy-5,6β:22,26-diepoxy-4β,24β,25α,26(α, β)-tetrahydroxyergost-2-en-1-one (4a/4b), and physapubescin D (5), by spectroscopic data analysis. Among them, metabolites 2 and 3 are new. All of these fungal strains showed the ability to be highly stereo- and region-specific for the bioconversion of substrate (1). Our research provides a reference for the structural derivatization of withanolides or possibly even other natural products.

Keywords

Physapubescin Biotransformation Fungal strains 

Notes

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 31270399), Liaoning Province Natural Science Foundation (Grant Number 201602689), Scientific Research Foundation for the Returned Overseas Chinese Scholars of Shenyang Pharmaceutical University (Grant Number GGJJ2015103), 2015 Career Development Program for Young and Middle-aged Teachers of Shenyang Pharmaceutical University (Grant Number ZQN2015015).

Supplementary material

11418_2016_1068_MOESM1_ESM.docx (15.8 mb)
Supplementary material 1 (DOCX 16128 kb)

References

  1. 1.
    Duan LH, Wang XY, Huo Y (2014) Development of Physalis pubescms L. and carrot juice compound beverage. Zhongguo Niangzao 33:168–171Google Scholar
  2. 2.
    Jiang XK, Niu CY, Li Y, Li G (2011) Effect of different treatments of raw material on quality of Physalis pubescens L. wine. Zhongguo Niangzao 8:98–101Google Scholar
  3. 3.
    Zhang H, Chen Z, Li X, Li XR, Xu QM, Yang SH (2010) Chemical constituents on dry sepal of Physalis pubescens L. Zhongcaoyao 41:1787–1790Google Scholar
  4. 4.
    Wang ZT, Gu Y, Lin K, Wen LK (2010) Development of Physalis pubescens L. fruit vinegar beverage. Zhongguo Tiaoweipin 35:60–63Google Scholar
  5. 5.
    EI Sheikha AF, Piombo G, Goli T, Montet D (2010) Main composition of Physalis (Physalis pubescens L.) fruit juice from Egypt. Fruits 65:255–265CrossRefGoogle Scholar
  6. 6.
    Xu QM, Liu YL, Feng YL, Li XR, Yang SL (2010) C28 sterols with a cyclopentane ring at C-22 and 26 from capegooseberry (berries of Physalis pubeacens L.). J Asian Nat Prod Res 12:752–759CrossRefPubMedGoogle Scholar
  7. 7.
    Xia GY, Li Y, Sun JW, Wang LQ, Tang XL, Huang J, Li B, Kang N, Chen LX, Qiu F (2016) Withanolides from the stems and leaves of Physalis pubescens and their cytotoxic activity. Steroids 115:136–146CrossRefPubMedGoogle Scholar
  8. 8.
    Sun CP, Qiu CY, Yuan T, Nie XF, Sun HX, Zhang Q, Li HX, Ding LQ, Zhao F, Chen LX, Qiu F (2016) Antiproliferative and anti-inflammatory withanolides from Physalis angulata. J Nat Prod 79:1586–1597CrossRefPubMedGoogle Scholar
  9. 9.
    Sun CP, Yuan T, Wang L, Kang N, Zhao F, Chen LX, Qiu F (2016) Anti-inflammatory labdane-type diterpenoids from Physalis angulata. RSC Adv 6:76838–76847CrossRefGoogle Scholar
  10. 10.
    Mayuramas SN, Ui Joung Y, Eun-Jung P, Tamara PK, Charles JS, Marisa MW (2016) Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorg Med Chem Lett 26:2755–2759CrossRefGoogle Scholar
  11. 11.
    Chen LX, Xia GY, He H, Huang J, Qiu F, Zi XL (2016) New withanolides with TRAIL-sensitizing effect from Physalis pubescens L. RSC Adv 6:52925–52936CrossRefPubMedGoogle Scholar
  12. 12.
    Chen LX, Xia GY, Qiu F, Wu CL, Denmon AP, Zi XL (2016) Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through downregulation of HIF-2α and inhibits tumor growth. Sci Rep 6:32582. doi: 10.1038/srep32582 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cao CM, Wu XQ, Kindscher K, Xu L, Timmermann BN (2015) Withanolides and sucrose esters from Physalis neomexicana. J Nat Prod 78:2488–2493CrossRefPubMedGoogle Scholar
  14. 14.
    Ding WJ, Hu ZJ, Zhang ZW, Ma QQ, Tang HF, Ma ZJ (2015) Physapubescin B exhibits potent activity against human prostate cancer in vitro and in vivo. J Agricul Food Chem 63:9504–9512CrossRefGoogle Scholar
  15. 15.
    Ma YM, Han W, Li J, Hu LH, Zhou YB (2015) Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro. Acta Pharm Sinica 36:517–527CrossRefGoogle Scholar
  16. 16.
    Brzoska MM, Borowska S, Tomczyk M (2016) Antioxidants as a potential preventive and therapeutic strategy for cadmium. Curr Drug Targets 17:1350–1384CrossRefPubMedGoogle Scholar
  17. 17.
    Peng CY, You BJ, Lee CL, Wu YC, Lin WH, Lu TL, Chang FC, Lee HZ (2016) The roles of 4β-hydroxywithanolide E from Physalis peruviana on the Nrf2-anti-oxidant system and the cell cycle in breast cancer cells. Am J Chin Med 44:617–636CrossRefPubMedGoogle Scholar
  18. 18.
    Andrea B, Heiko V, Yannick P, Gerhard P, Grit K, Astrid TG, Wilhelm B, David GH, Hanna MHF (2016) Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nat Commun 7:12530. doi: 10.1038/ncomms12530 CrossRefGoogle Scholar
  19. 19.
    Yang YK, Xie SD, Xu WX, Nian Y, Liu XL, Peng XR, Ding ZT, Qiu MH (2016) Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia 112:144–152CrossRefPubMedGoogle Scholar
  20. 20.
    Wang YC (2014) Antimicrobial activity and stability of physalins from calyx seu Fructus Physalis. Shipin Kexue 35:68–71Google Scholar
  21. 21.
    Stranick SJ, Chase DB, Michaels CA (2002) Near-field vibrational spectroscopy: infrared and Raman studies at high spatial resolution. Am Pharm Rev 5:82–85Google Scholar
  22. 22.
    Basso AV, Nicotra VE, Parra A, Martínez A, Fernandez-Vivas A (2016) Biotransformation of Salpichrolides A, C, and G by three filamentous fungi. J Nat Prod 79:1658–1667CrossRefPubMedGoogle Scholar
  23. 23.
    Veleiro AS, Oberti JC, Burton G (1992) A ring-D aromatic withanolide from Salpichroa origanifolia. Phytochemistry 31:935–937CrossRefGoogle Scholar
  24. 24.
    Veleiro AS, Burton G, Bonetto GM, Gil RR, Oberti JC (1994) New withanolides from Salpichroa origanifolia. J Nat Prod 57:1741–1745CrossRefGoogle Scholar
  25. 25.
    Tettamanzi MC, Veleiro AS, Oberti JC, Burton G (1998) New hydroxylated withanolides from Salpichroa origanifolia. J Nat Prod 61:338–342CrossRefPubMedGoogle Scholar
  26. 26.
    Lv X, Liu D, Hou J, Dong PP, Zhan LB, Wang L, Deng S, Wang CY, Yao JH, Shu XH, Liu KX, Ma XC (2013) Biotransformation of imperatorin by Penicillium janthinellum. Anti-osteoporosis activities of its metabolites. Food Chem 138:2260–2266CrossRefPubMedGoogle Scholar
  27. 27.
    Yang WZ, Ye M, Huang FX, He WN, Guo DA (2012) Biocatalysis of cycloastragenol by filamentous fungi to produce unexpected triterpenes. Adv Synth Catal 354:527–539CrossRefGoogle Scholar
  28. 28.
    Grogan G (2012) Biotransformations. Annu Rep Prog Chem 108:202–227CrossRefGoogle Scholar
  29. 29.
    Clouthierz CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605CrossRefGoogle Scholar
  30. 30.
    Lima-Ramos J, Neto W, Woodley JM (2014) Engineering of biocatalysts and biocatalytic processes. Top Catal 57:301–320CrossRefGoogle Scholar
  31. 31.
    Wang YX, Chen LX, Zhao F, Liu ZH, Li JQ, Qiu F (2011) Microbial transformation of neoandrographolide by Mucor spinosus (AS 3.2450). J Mol Catal B Enzym 68:83–88CrossRefGoogle Scholar
  32. 32.
    Li L, Yuan YL, Ma ZJ, Chen Z, Gan LS, Ma XQ, Huang DS (2013) Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae). Steroids 78:860–865CrossRefGoogle Scholar
  33. 33.
    Kirson I, Gottlieb HE, Glotter E (1980) Physapubescin, a new ergostane-type steroid from Physalis pubescens L. (Solanaceae). J Chem Res 4:125Google Scholar
  34. 34.
    Zhu XH, Takagi M, Ikeda T (2001) Withanolide-type steroids from Solanum cilistum. Phytochemistry 56:741–745CrossRefPubMedGoogle Scholar
  35. 35.
    Chen LX, He H, Qiu F (2011) Natural withanolides: an overview. Nat Prod Rep 28:705–740CrossRefPubMedGoogle Scholar
  36. 36.
    Cao CM, Zhang HP, Gallagher RJ, Timmermann BN (2013) Withanolide artifacts formed in methanol. J Nat Prod 76:2040–2046CrossRefPubMedGoogle Scholar
  37. 37.
    Baraka HN, Khanfar MA, Williams JC, El-Giar EM, El Sayed KA (2011) Bioactive natural, biocatalytic, and semisynthetic tobacco cembranoids. Planta Med 77:467–476CrossRefPubMedGoogle Scholar
  38. 38.
    Parshikov IA, Sutherland JB (2015) Biotransformation of steroids and flavonoids by cultures of Aspergillus niger. Appl Biochem Biotechnol 176:903–923CrossRefPubMedGoogle Scholar
  39. 39.
    Amreen S, Pallavi J, Laxminarain M, Neelam S, Mahendra D (2014) 5,6-de-epoxy-5-en-7-one-17-hydroxy withaferin A, a new cytotoxic steroid from Withania somnifera L. Nat Prod Res 28:392–398CrossRefGoogle Scholar
  40. 40.
    He H, Zang LH, Feng YS, Chen LX, Kang N, Tashiro SI, Qiu F, Ikejima T (2013) Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-κB survival pathway in A375-S2 cells. J Ethnopharmacol 148:544–555CrossRefPubMedGoogle Scholar
  41. 41.
    Kumar S, Seal CJ, Howes MJR, Kite GC, Okello EJ (2010) In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and b-amyloid(1–42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 24:1567–1574CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2017

Authors and Affiliations

  • Chongyue Qiu
    • 1
  • Ting Yuan
    • 1
  • Dejuan Sun
    • 1
  • Suyu Gao
    • 1
  • Lixia Chen
    • 1
    Email author
  1. 1.Key Laboratory of Structure-Based Drug Design & Discovery, Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Wuya College of Innovation, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations