Journal of Natural Medicines

, Volume 71, Issue 2, pp 357–366 | Cite as

Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane

  • Kamol Yusook
  • Oratai Weeranantanapan
  • Yanling Hua
  • Pakarang Kumkrai
  • Nuannoi ChudapongseEmail author
Original Paper


In this study, lupinifolin, a prenylated flavonoid, was isolated from Derris reticulata stem, identified by NMR spectra and confirmed with mass spectrometry. Lupinifolin was freshly prepared by solubilizing in 0.1 N NaOH and immediately diluted in Müller–Hinton broth for antibacterial testing. The data showed that Gram-positive bacteria were more susceptible to lupinifolin than Gram-negative bacteria. Of four strains of Gram-positive bacteria tested, Staphylococcus aureus was the most susceptible. Using the two-fold microdilution method, it was found that lupinifolin possessed antimicrobial activity against S. aureus with minimum inhibitory concentration and minimum bactericidal concentration of 8 and 16 µg/ml, respectively, which is less potent than ampicillin. However, from the time–effect relationship, it was shown that lupinifolin had faster onset than ampicillin. The faster onset of lupinifolin was confirmed by scanning electron microscopy. To investigate the mechanism of action of lupinifolin, transmission electron microscopy (TEM) was performed to observe the ultrastructure of S. aureus. The TEM images showed that lupinifolin ruptured the bacterial cell membrane and cell wall. Due to its fast onset, it is suggested that the action of lupinifolin is likely to be the direct disruption of the cell membrane. This hypothesis was substantiated by the data from flow cytometry using DiOC2 as an indicator. The result showed that the red/green ratio which indicated bacterial membrane integrity was significantly decreased, similar to the known protonophore carbonyl cyanide 3-chlorophenylhydrazone. It is concluded that lupinifolin inhibits the growth of S. aureus by damaging the bacterial cytoplasmic membrane.


Derris reticulata Lupinifolin Staphylococcus aureus Antimicrobial Cell membrane disruption 



We thank Dr. Paul J. Grote for verification of plant botanical classification.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11418_2016_1065_MOESM1_ESM.png (9 kb)
S1. 1H-NMR signal of lupinifolin (PNG 9 kb)
11418_2016_1065_MOESM2_ESM.png (11 kb)
S2. 13C-NMR signal of lupinifolin (PNG 10 kb)


  1. 1.
    Yokoe DS, Classen D (2008) Improving patient safety through infection control: a new healthcare imperative. Infect Control Hosp Epidemiol 29(Suppl 1):S3–S11CrossRefPubMedGoogle Scholar
  2. 2.
    Center for Disease Control and Prevention (2016) National and state healthcare-associated infections progress report. Accessed 01 July 16
  3. 3.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281CrossRefPubMedGoogle Scholar
  4. 4.
    Hatano T, Kusuda M, Inada K, Ogawa TO, Shiota S, Tsuchiya T, Yoshida T (2005) Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry 66:2047–2055CrossRefPubMedGoogle Scholar
  5. 5.
    Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356CrossRefPubMedGoogle Scholar
  6. 6.
    Soonthornchareonnon N, Ubonopas L, Kaewsuwan S, Wuttiudomlert M (2004) Lupinifolin, a bioactive flavanone from Myriopteron extensum (Wight) K Schum. stem. Thai J Phytopharm 11:19–27Google Scholar
  7. 7.
    Prasad SK, Laloo D, Kumar K, Hemalatha S (2013) Antidiarrhoeal evaluation of root extract, its bioactive fraction, and lupinifolin isolated from Eriosema chinense. Planta Med 79:1620–1627CrossRefPubMedGoogle Scholar
  8. 8.
    Joycharat N, Thammavong S, Limsuwan S, Homlaead S, Voravuthikunchai SP, Yingyongnarongkul BE, Dej-Adisai S, Subhadhirasakul S (2013) Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch Pharm Res 36:723–730CrossRefPubMedGoogle Scholar
  9. 9.
    Khaomek P, Ichino C, Ishiyama A, Sekiguchi H, Namatame M, Ruangrungsi N, Saifah E, Kiyohara H, Otoguro K, Omura S, Yamada H (2008) In vitro antimalarial activity of prenylated flavonoids from Erythrina fusca. J Nat Med 62:217–222CrossRefPubMedGoogle Scholar
  10. 10.
    Chivapat S, Chavalittumrong P, Attawish A, Soonthornchareonnon N (2009) Toxicity study of lupinifolin from stem of Derris reticulata Craib. J Thai Tradit Altern Med 7:146–155Google Scholar
  11. 11.
    Sutthivaiyakit S, Thongnak O, Lhinhatrakool T, Yodchun O, Srimark R, Dowtaisong P, Chuankamnerdkarn M (2009) Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J Nat Prod 72:1092–1096CrossRefPubMedGoogle Scholar
  12. 12.
    Mahidol C, Prawat H, Ruchirawat S, Lihkitwitayawuid K, Lin LZ, Cordell GA (1997) Prenylated flavanones from Derris reticulata. Phytochemistry 45:825–829CrossRefGoogle Scholar
  13. 13.
    Humeera N, Kamili AN, Bandh SA, Amin SU, Lone BA, Gousia N (2013) Antimicrobial and antioxidant activities of alcoholic extracts of Rumex dentatus L. Microb Pathog 57:17–20CrossRefPubMedGoogle Scholar
  14. 14.
    Wikler MA, Cockerill FR, Craig WA, Dudley MN, Eliopoulos GM, Hecht DW, Hindler JF, Low DE, Sheehan DJ, Tenover FC, Turnidge JD, Weinstein MP, Zimmer BL, Ferraro MJ and Swenson JM (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. In: Wilhelm DM, Lewis MA (eds) Clinical and Laboratory Standards Institute document M07-A8, Pennsylvania, pp 16–18Google Scholar
  15. 15.
    Ghosh S, Indukuri K, Bondalapati S, Saikia AK, Rangan L (2013) Unveiling the mode of action of antibacterial labdane diterpenes from Alpinia nigra (Gaertn.) BL Burtt seeds. Eur J Med Chem 66:101–105CrossRefPubMedGoogle Scholar
  16. 16.
    Eun YJ, Foss MH, Kiekebusch D, Pauw DA, Westler WM, Thanbichler M, Weibel DB (2012) DCAP: a broad-spectrum antibiotic that targets the cytoplasmic membrane of bacteria. J Am Chem Soc 134:11322–11325CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chan YY, Li CH, Shen YC, Wu TS (2010) Anti-inflammatory principles from the stem and root barks of Citrus medica. Chem Pharm Bull 58:61–65CrossRefPubMedGoogle Scholar
  18. 18.
    Chang SH (1990) Flavonoids, coumarins and acridone alkaloids from the root bark of Citrus limonia. Phytochemistry 29:351–353CrossRefGoogle Scholar
  19. 19.
    Ngadjui BT, Kouam SF, Dongo E, Kapche GWF, Abegaz BM (2000) Prenylated flavonoids from the aerial parts of Dorstenia mannii. Phytochemistry 55:915–919CrossRefPubMedGoogle Scholar
  20. 20.
    Matsuura N, Iinuma M, Tanaka T, Mizuno M (1995) Chemotaxonomic approach to the genus Euchresta based on prenylflavonoids and prenylflavanones in roots of Euchresta formosana. Biochem Syst Ecol 23:539–545CrossRefGoogle Scholar
  21. 21.
    Pethakamsetty L, Seru G, Kandula L (2010) Phytochemical and biological examination of the aerial parts of Tephrosia pumila. J Pharm Res 3:193–197Google Scholar
  22. 22.
    Ingham JL, Tahara S, Dziedzic S (1988) Major flavanones from Lonchocarpus guatamalensis. Z Naturforsch C 43:818–822Google Scholar
  23. 23.
    Ntie-Kang F, Onguene PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM (2014) The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J 13:81CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ganapaty S, Josaphine JS, Thomas PS (2006) Anti-inflammatory activity of Derris scandens. J Nat Rem 6:73–76Google Scholar
  25. 25.
    Lin YL, Chen YL, Kuo YH (1991) Three new flavonoids, 3′-methoxylupinifolin, laxifolin, and isolaxifolin from the roots of Derris laxiflora BENTH. Chem Pharm Bull 39:3132–3135CrossRefGoogle Scholar
  26. 26.
    Royal Society of Chemistry, ChemSpider search and share chemistry. Accessed 20 April 2016
  27. 27.
    Kurien BT, Scofield RH (2007) Curcumin/turmeric solubilized in sodium hydroxide inhibits HNE protein modification-an in vitro study. J Ethnopharmacol 110:368–373CrossRefPubMedGoogle Scholar
  28. 28.
    Molecular Probes, Product information:BacLight™ Bacterial membrane potential kit. 2004. Accessed 15 May 2016

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  • Kamol Yusook
    • 1
  • Oratai Weeranantanapan
    • 1
  • Yanling Hua
    • 2
  • Pakarang Kumkrai
    • 3
  • Nuannoi Chudapongse
    • 1
    Email author
  1. 1.School of Preclinical Sciences, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.The Center for Scientific and Technological EquipmentSuranaree University of TechnologyNakhon RatchasimaThailand
  3. 3.Division of Health Promotion, Faculty of Health ScienceSrinakharinwirot UniversityOngkharakThailand

Personalised recommendations