Ministry of Health, Labor and Welfare of Japan (2010) The Japanese pharmacopoeia, 16th edn. Tokyo
Urabe A, Shimada K, Kwai S (2015) Today’s drug therapy in 2015. Nankodo, Tokyo
Google Scholar
Toriizuka K (2003) Monographs of pharmacological research on traditional herbal medicines (Shoyaku no yakuso yakuri). Ishiyaku, Tokyo
Google Scholar
Batz F, Hitchens K, Jellin JM (2012) Pharmacist’s letter/Prescriber’s letter natural medicines comprehensive database, 13th edn. Therapeutic Research Faculty, Stockton
Google Scholar
Yeom MJ, Lee HC, Kim GH, Lee HJ, Shim I, Oh SK, Kang SK, Hahm DH (2006) Anti-arthritic effects of Ephedra sinica STAPF herb-acupuncture: inhibition of lipopolysaccharide-induced inflammation and adjuvant-induced polyarthritis. J Pharmacol Sci 100:41–50
CAS
Article
PubMed
Google Scholar
Kasahara Y, Hikino H, Tsurufuji S, Watanabe M, Ohuchi K (1985) Antiinflammatory actions of ephedrines in acute inflammations. Planta Med 4:325–331
Article
Google Scholar
Hyuga S, Hyuga M, Oshima M, Maruyama M, Kamakura H, Yamashita T, Yoshimura M, Amakura Y, Hakamatsuka T, Odaguchi H, Goda Y, Hanawa T (2016) Ephedrine alkaloids-free Ephedra Herb extract: a safer alternative to ephedra with comparable analgesic, anticancer, and anti-influenza activities. J Nat Med 70:571–583
CAS
Article
PubMed
PubMed Central
Google Scholar
Barrot M (2012) Tests and models of nociception and pain in rodents. Neuroscience 211:39–50
CAS
Article
PubMed
Google Scholar
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824
CAS
Article
PubMed
Google Scholar
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543
CAS
Article
PubMed
Google Scholar
Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, Julius D, Högestätt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457
CAS
Article
PubMed
Google Scholar
Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160
CAS
Article
PubMed
PubMed Central
Google Scholar
Szolcsányi J, Sándor Z (2012) Multisteric TRPV1 nocisensor: a target for analgesics. Trends Pharmacol Sci 33:646–655
Article
PubMed
Google Scholar
Planells-Cases R, Garcìa-Sanz N, Morenilla-Palao C, Ferrer-Montiel A (2005) Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflug Arch 451:151–159
CAS
Article
Google Scholar
Lewin GR, Nykjaer A (2014) Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 39:363–374
Article
PubMed
PubMed Central
Google Scholar
O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64:939–971
Article
PubMed
PubMed Central
Google Scholar
Ohkawara S, Tanaka-Kagawa T, Furukawa Y, Nishimura T, Jinno H (2010) Activation of the human transient receptor potential vanilloid subtype 1 by essential oils. Biol Pharm Bull 33:1434–1437
CAS
Article
PubMed
Google Scholar
Ohkawara S, Tanaka-Kagawa T, Furukawa Y, Jinno H (2012) Methylglyoxal activates the human transient receptor potential ankyrin 1 channel. J Toxicol Sci 37:831–835
CAS
Article
PubMed
Google Scholar
Melo CM, Maia JL, Cavalcante IJ, Lima MA, Vieira GA, Silveira ER, Rao VS, Santos FA (2006) 12-Acetoxyhawtriwaic acid lactone, a diterpene from Egletes viscosa, attenuates capsaicin-induced ear edema and hindpaw nociception in mice: possible mechanisms. Planta Med 72:584–589
CAS
Article
PubMed
Google Scholar
Rosland JH, Hunskaar S, Hole K (1990) Diazepam attenuates morphine antinociception test-dependently in mice. Pharmacol Toxicol 66:382–386
CAS
Article
PubMed
Google Scholar
Wang S, Chuang HH (2011) C-terminal dimerization activates the nociceptive transduction channel transient receptor potential vanilloid 1. J Biol Chem 286:40601–40607
CAS
Article
PubMed
PubMed Central
Google Scholar
Valenzano KJ, Grant ER, Wu G, Hachicha M, Schmid L, Tafesse L, Sun Q, Rotshteyn Y, Francis J, Limberis J, Malik S, Whittemore ER, Hodges D (2003) N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther 306:377–386
CAS
Article
PubMed
Google Scholar
Pomonis JD, Harrison JE, Mark L, Bristol DR, Valenzano KJ, Walker K (2003) N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. in vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306:387–393
CAS
Article
PubMed
Google Scholar
Okumi H, Takashima K, Matsumoto K, Namiki T, Terasawa K, Horie S (2012) Dietary agonists of TRPV1 inhibit gastric acid secretion in mice. Planta Med 78:1801–1806
CAS
Article
PubMed
Google Scholar
Gavva NR, Tamir R, Klionsky L, Norman MH, Louis JC, Wild KD, Treanor JJ (2005) Proton activation does not alter antagonist interaction with the capsaicin-binding pocket of TRPV1. Mol Pharmacol 68:1524–1533
CAS
PubMed
Google Scholar
Meotti FC, Lemos de Andrade E, Calixto JB (2014) TRP modulation by natural compounds. Handb Exp Pharmacol 223:1177–1238
CAS
Article
PubMed
Google Scholar
Kobayashi Y (2003) The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Med 69:425–428
CAS
Article
PubMed
Google Scholar
Anand P, Bley K (2011) Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br J Anaesth 107:490–502
CAS
Article
PubMed
PubMed Central
Google Scholar
Webster LR, Peppin JF, Murphy FT, Tobias JK, Vanhove GF (2012) Tolerability of NGX-4010, a capsacin 8% patch, in conjunction with three topical anesthetic formulations for the treatment of neuropathic pain. J Pain Res 5:7–13
CAS
Article
PubMed
PubMed Central
Google Scholar
Mainka T, Malewicz NM, Baron R, Enax-Krumova EK, Treede RD, Maier C (2016) Presence of hyperalgesia predicts analgesic efficacy of topically applied capsaicin 8% in patients with peripheral neuropathic pain. Eur J Pain 20:116–129
CAS
Article
PubMed
Google Scholar
Touska F, Marsakova L, Teisinger J, Vlachova V (2011) A “cute” desensitization of TRPV1. Curr Pharm Biotechnol 12:122–129
CAS
Article
PubMed
Google Scholar
Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17:3525–3537
CAS
Article
PubMed
Google Scholar
Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD (2004) Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium 35:471–478
CAS
Article
PubMed
Google Scholar
Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432
CAS
Article
PubMed
Google Scholar
Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006
CAS
Article
PubMed
PubMed Central
Google Scholar
Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62
CAS
Article
PubMed
PubMed Central
Google Scholar
Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918
CAS
Article
PubMed
Google Scholar
Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, Planells-Cases R (2012) Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem 287:19462–19471
CAS
Article
PubMed
PubMed Central
Google Scholar
Kennedy WR, Vanhove GF, Lu SP, Tobias J, Bley KR, Walk D, Wendelschafer-Crabb G, Simone DA, Selim MM (2010) A randomized, controlled, open-label study of the long-term effects of NGX-4010, a high-concentration capsaicin patch, on epidermal nerve fiber density and sensory function in healthy volunteers. J Pain 11:579–587
CAS
Article
PubMed
Google Scholar
Wei P, Huo HL, Ma QH, Li HC, Xing XF, Tan XM, Luo JB (2014) Pharmacokinetic comparisons of five ephedrine alkaloids following oral administration of four different Mahuang-Guizhi herb-pair aqueous extracts ratios in rats. J Ethnopharmacol 155:642–648
CAS
Article
PubMed
Google Scholar
Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 171:2474–2507
CAS
Article
PubMed
PubMed Central
Google Scholar
Gavva NR, Treanor JJ, Garami A, Fang L, Surapaneni S, Akrami A, Alvarez F, Bak A, Darling M, Gore A, Jang GR, Kesslak JP, Ni L, Norman MH, Palluconi G, Rose MJ, Salfi M, Tan E, Romanovsky AA, Banfield C, Davar G (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136:202–210
CAS
Article
PubMed
Google Scholar
Rowbotham MC, Nothaft W, Duan WR, Wang Y, Faltynek C, McGaraughty S, Chu KL, Svensson P (2011) Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain 152:1192–1200
CAS
Article
PubMed
Google Scholar