Journal of Natural Medicines

, Volume 70, Issue 4, pp 721–730 | Cite as

Chemical constituents from Inonotus obliquus and their antitumor activities

  • Fenqin Zhao
  • Guiyang Xia
  • Lixia Chen
  • Junli Zhao
  • Zhanfang Xie
  • Feng QiuEmail author
  • Guang HanEmail author
Original Paper


Four new lanostane-type triterpenes (inonotusanes D–G, 14), including a 24,25,26,27-tetranorlanostane, together with 11 known compounds (515), including 7 lanostane derivatives, 2 steroids and 2 aromatic compounds, were isolated from the sclerotia of Inonotus obliquus. Their structures were elucidated by 1D and 2D NMR spectroscopy and HRMS. To our knowledge, 1 is the first 24,25,26,27-tetranorlanostane-type triterpenoid from fungus, and this is the first time that 31-member lanostane-type triterpenes, 5 and 6, have been isolated from the sclerotia of I. obliquus instead of from its submerged culture. 7 and 8 are also new isolates of this genus. Compounds 1, 8, 12 and 13 exhibited strong cytotoxicity against the 4T1 (mouse breast cancer) cell line, with IC50 9.40, 7.79, 9.06 and 9.31 μM, respectively. 8, 12 and 13 also exhibited strong cytotoxicity against the the MCF-7 (human breast cancer) cell line, with IC50 8.35–9.01 μM.


Inonotus obliquus Triterpenoids Inonotusane D Inonotusane E Inonotusane F Inonotusane G Antitumor 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Taji S, Yamada T, Wada S, Tokuda H, Sakuma K, Tanaka R (2008) Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem 43:2373–2379CrossRefPubMedGoogle Scholar
  2. 2.
    Zheng WF, Zhang MM, Zhao YX, Wang Y, Miao KJ, Wei ZW (2009) Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresour Technol 100:1327–1335CrossRefPubMedGoogle Scholar
  3. 3.
    Handa N, Yamada T, Tanaka R (2010) An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774–1779CrossRefPubMedGoogle Scholar
  4. 4.
    Tanaka R, Toyoshima M, Yamada T (2011) New lanostane-type triterpenoids, inonotsutriols D, and E, from Inonotus obliquus. Phytochem Lett 4:328–332CrossRefGoogle Scholar
  5. 5.
    Nakamura S, Iwami J, Matsuda H, Mizuno S, Yoshikawa M (2009) Absolute stereostructures of inoterpenes A–F from sclerotia of Inonotus obliquus. Tetrahedron 65:2443–2450CrossRefGoogle Scholar
  6. 6.
    Nakata T, Yamada T, Taji S, Ohishi H, Wada S, Tokuda H, Sakuma K, Tanaka R (2007) Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorgan Med Chem 15:257–264CrossRefGoogle Scholar
  7. 7.
    Zhao FQ, Mai QQ, Ma JH, Xu M, Wang X, Cui TT, Qiu F, Han G (2015) Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia 101:34–40CrossRefPubMedGoogle Scholar
  8. 8.
    Sholichin M, Miyahara K, Kawasaki T (1982) Spirocyclic nortriterpenes from bulbs of Scilla scilloides II. New spirocyclic furanoid nortriterpenes and related tetranortriterpene spirolactones. Heterocycles 17:251–257CrossRefGoogle Scholar
  9. 9.
    Kuroda M, Mimaki Y, Ori K, Koshino H, Nukada T, Sakagami H, Sashida Y (2002) Lucilianosides A and B, two novel tetranor-lanostane hexaglycosides from the bulbs of Chionodoxa luciliae. Tetrahedron 58:6735–6740CrossRefGoogle Scholar
  10. 10.
    Ori K, Koroda M, Mimaki Y (2003) Lanosterol and tetranorlanosterol glycosides from the bulbs of Muscari paradoxum. Phytochemistry 64:1351–1359CrossRefPubMedGoogle Scholar
  11. 11.
    Ono M, Takatsu Y, Ochiai T, Yasuda S, Nishida Y, Tanaka T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2012) Two new nortriterpenoid glycosides and a new phenylpropanoid glycoside from the bulbs of Scilla scilloides. Chem Pharm Bull 60:1314–1319CrossRefPubMedGoogle Scholar
  12. 12.
    Shin Y, Tamai Y, Terazawa H (2000) Chemical constituents of Inonotus obliquus (Pers: Fr.) Pil. (Aphyllophoromycetideae) III: a new triterpene, 3β,22,25-trihydroxy-lanosta-8-ene from sclerotia. Int J Med Mushrooms 2:201–207CrossRefGoogle Scholar
  13. 13.
    Rios JL, Andujar I, Recio MC, Giner RM (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044CrossRefPubMedGoogle Scholar
  14. 14.
    Rios JL (2011) Chemical constituents and pharmacological properties of Poria cocos. Planta Med 77:681–691CrossRefPubMedGoogle Scholar
  15. 15.
    Taji S, Yamada T, Tanaka R (2008) Three new lanostane triterpenoids, inonotsutriols A, B, and C, from Inonotus obliquus. Helv Chim Acta 91:1513–1524CrossRefGoogle Scholar
  16. 16.
    Shin Y, Tamai Y, Terazawa M (2000) Chemical constituents of Inonotus obliquus. Eurasian J For Res 1:43–50Google Scholar
  17. 17.
    Kahlos K, Hiltunen R (1986) 3β,22-dihydroxylanosta-7,9(11),24-triene a new, minor compound from Inonotus obliquus. Planta Med 52:495–496CrossRefGoogle Scholar
  18. 18.
    Liu C, Zhao C, Pan HH, Kang J, Yu XT, Wang HQ, Li BW, Xie YZ, Chen RY (2014) Chemical constituents from Inonotus obliquus and their biological activities. J Nat Prod 77:35–41CrossRefPubMedGoogle Scholar
  19. 19.
    Tai T, Akahori A, Shingu T (1993) Triterpenes of Poria cocos. Phytochemistry 32:1239–1244CrossRefGoogle Scholar
  20. 20.
    Yoshikawa K, Kuroboshi M, Arihara S, Miura N, Tujimura N, Sakamoto K (2002) New triterpenoids from Tricholoma saponaceum. Chem Pharm Bull 50:1603–1606CrossRefPubMedGoogle Scholar
  21. 21.
    Coll J, Reixach N, Sanchez-Baeza F, Casas J, Camps F (1994) New ecdysteroids from Polypodium vulgare. Tetrahedron 50:7247–7252CrossRefGoogle Scholar
  22. 22.
    Ying YM, Zhang LY, Zhang X, Bai HB, Liang DE, Ma LF, Shan WG, Zhan ZJ (2014) Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry 108:171–176CrossRefPubMedGoogle Scholar
  23. 23.
    Peng XR, Liu JQ, Wang CF, Li XY, Shu Y, Zhou L, Qiu MH (2014) Hepatoprotective effects of triterpenoids from Ganoderma cochlear. J Nat Prod 77:737–743CrossRefPubMedGoogle Scholar
  24. 24.
    Kobori M, Yoshida M, Ohnishi-Kameyama M, Takei T, Shinmoto H (2006) 5α,8α-epidioxy-22E-ergosta-6,9 (11),22-trien-3β-ol from an edible mushroom suppresses growth of HL-60 leukemia and HT29 colon adenocarcinoma cells. Biol Pharm Bull 29:755–759CrossRefPubMedGoogle Scholar
  25. 25.
    Ioannou E, Abdel-Razik AF, Zervou M, Christofidis D, Alexi X, Vagias C, Alexis MN, Roussis V (2009) 5α,8α-epidioxysterols from the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum: isolation and evaluation of their antiproliferative activity. Steroids 74:73–80CrossRefPubMedGoogle Scholar
  26. 26.
    Ohmura K, Miyase T, Ueno A (1989) Sesquiterpene glucosides and a phenylbutanoid glycoside from Hypochoeris radicata. Phytochemistry 28:1919–1924CrossRefGoogle Scholar
  27. 27.
    Hye SK, Jin HC, Won KC, Jong CP, Jae SC (2004) A sphingolipid and tyrosinase inhibitors from the fruiting body of phellinus linteus. Arch Pharm Res 27:742–750CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
  2. 2.Institute of PharmacyHenan UniversityKaifengChina
  3. 3.School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations