Skip to main content
Log in

Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

We aimed to investigate the bioactive components of Alpinia japonica as anti-inflammatory compounds using searches of the Alpinia genus, and subsequently demonstrated that alpinone 3-acetate markedly inhibits 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation in a mouse model of ear edema. To assess other bioactivities of alpinone 3-acetate, we performed translatome analyses and compared them with those of hydrocortisone. Polysome-associated mRNAs were prepared from alpinone 3-acetate- or hydrocortisone-treated and control cells from 12-O-tetradecanoyiphorbol 13-acetate-induced THP-1-derived macrophages cultured in the presence of Escherichia coli O-111 lipopolysaccharide. Subsequent microarray analysis revealed that alpinone 3-acetate and hydrocortisone upregulated and downregulated the same 155 and 41 genes, respectively. Moreover, direct comparisons of translationally regulated genes indicated 5 and 10 gene probes that were upregulated and downregulated by alpinone 3-acetate and hydrocortisone, respectively. In conclusion, assays of 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation ear edema in mice and polysome profiling of alpinone 3-acetate bioactivities indicated similar medicinal possibilities to those of hydrocortisone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. King HA, Gerber AP. (2014) Translatome profiling: methods for genome-scale analysis of mRNA translation. Brief Funct Genomics pii: elu045

  2. Michel AM, Baranov PV (2013) Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interdiscip Rev RNA 4:473–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuersten S, Radek A, Vogel C, Penalva LO (2013) Translation regulation gets its ‘omics’ moment. Wiley Interdiscip Rev RNA 4:617–630

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  5. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tebaldi T, Re A, Viero G, Pegoretti I, Passerini A, Blanzieri E, Quattrone A (2012) Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genom 13:1–15

    Article  Google Scholar 

  7. Sivan G, Kedersha N, Elroy-Stein O (2007) Ribosomal slow-down mediates translational arrest during cellular division. Mol Cell Biol 27:6639–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun Y, Matsubara H, Kitanaka S, Yasukawa K (2008) Diarylheptanoids from the rhizomes of Alpinia officinarum. Helv Chim Acta 91:118–123

    Article  CAS  Google Scholar 

  9. Sun Y, Tabata K, Matsubara H, Kitanaka S, Kitanaka S, Suzuki T, Yasukawa K (2008) New cytotoxic diarylheptanoids from the rhizomes of Alpinia officinarum. Planta Med 74:427–431

    Article  CAS  PubMed  Google Scholar 

  10. Yasukawa K, Sun Y, Kitanaka S, Tomizawa N, Miura M, Motohashi S (2008) Inhibitory effect of the Rhizomes of Alpinia officinarum on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. J Nat Med 62:374–378

    Article  CAS  PubMed  Google Scholar 

  11. Tabata K, Yamazaki Y, Okada M, Fukumura K, Shimada A, Sun Y, Yasukawa K, Suzuki T (2009) Diarylheptanoids derived from Alpinia officinarum induce apoptosis, S-phase arrest and differentiation in human neuroblastoma cells. Anticancer Res 29:4981–4988

    CAS  PubMed  Google Scholar 

  12. Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Kurokawa M (2010) Antiviral activities of diarylheptanoids against influenza virus in vitro. J Nat Med 64:117–120

    Article  CAS  PubMed  Google Scholar 

  13. Sawamura R, Shimizu T, Sun Y, Yasukawa K, Miura M, Toriyama M, Motohashi S, Watanabe W, Konno K, Kurokawa M (2010) In vitro and in vivo anti-influenza virus activity of diarylheptanoids isolated from Alpinia officinarum. Antiviral Chem Chemother 21:33–41

    Article  CAS  Google Scholar 

  14. Konno K, Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Kato M, Yamamoto R, Kurokawa M (2011) Antiviral activities of diarylheptanoids isolated from Alpinia officinarum against respiratory syncytial virus, poliovirus, measles virus, and herpes simplex type 1 in vitro. Nat Prod Commun 6:1881–1884

    CAS  PubMed  Google Scholar 

  15. Konno K, Miura M, Toriyama M, Motohashi S, Sawamura R, Watanabe W, Yoshida H, Kato M, Yamamoto R, Yasukawa K, Kurokawa M (2013) Antiviral activity of diarylheptanoid stereoisomers against respiratory syncytial virus in vitro and in vivo. J Nat Med 67:73–781

    Article  Google Scholar 

  16. Kakegawa T, Takase S, Masubuchi E, Yasukawa K (2014) Diarylheptanoids from Alpinia officinarum cause distinct but overlapping effects on the translatome of B lymphoblastoid cells. Evid Based Complement Alternat Med 2014:204797

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miura M, Toriyama M, Kawakubo T, Yasukawa K, Takido T, Motohashi S (2010) Asymmetric synthesis of γ-hydroxy α-enones by 1,8-diazabicyclo [5.4.0]undec-7-ene-catalyzed stereoselective rearrangement of chiral α-sulfinyl enones. Org Lett 12:3882–3885

    Article  CAS  PubMed  Google Scholar 

  18. Han MS, Lee IK, Kim YS, Kim JT, Choe KR, Yun BS (2010) Flavonoids from propolis inhibit DNA single strand breakage by the fenton reaction. J Korean Soc Appl Biol Chem 53:512–515

    Article  CAS  Google Scholar 

  19. Rossi MH, Yoshida M, Maia JGS (1997) Neolignans, styrylpyrones and flavonoids from an Aniba species. Phytochemistry 45:1263–1269

    Article  CAS  Google Scholar 

  20. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536

    CAS  PubMed  Google Scholar 

  21. Kelder T, Pico AR, Hanspers K, van Iersel MP, Evelo C, Conklin BR (2009) Mining biological pathways using WikiPathways web services. PLoS ONE 4:e6447

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ignatchenko V, Ignatchenko A, Sinha A, Boutros PC, Kislinger T (2015) VennDIS: a JavaFX-based Venn and Euler diagram software to generate publication quality figures. Proteomics 7:1239–1244

    Article  Google Scholar 

  23. He S, Yang L, Li D, Li M (2015) Kruppel-Like Factor 2-Mediated Suppression of MicroRNA-155 Reduces the Proinflammatory Activation of Macrophages. PLoS ONE 10:e0139060

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sugimoto T, Morioka N, Zhang FF, Sato K, Abe H, Hisaoka-Nakashima K, Nakata Y (2014) Clock gene Per1 regulates the production of CCL2 and interleukin-6 through p38, JNK1 and NF-κB activation in spinal astrocytes. Mol Cell Neurosci 59:37–46

    Article  PubMed  Google Scholar 

  25. He X, Li Y, Li C, Liu LJ, Zhang XD, Liu Y, Shu HB (2012) USP2a negatively regulates IL-1β- and virus-induced NF-κB activation by deubiquitinating TRAF6. J Mol Cell Biol 5:39–47

    Article  PubMed  Google Scholar 

  26. Li Y, Yan M, Yang J, Raman I, Du Y, Min S, Fang X, Mohan C, Li QZ (2014) Glutathione S-transferase Mu 2-transduced mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting oxidation and inflammation. Stem Cell Res Ther 5:19. doi:10.1186/scrt408

    Article  PubMed  PubMed Central  Google Scholar 

  27. Borrelli GM, Abrão MS, Mechsner S (2013) Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum Reprod 29:253–266

    Article  PubMed  Google Scholar 

  28. Ivanov P, Anderson P (2013) Post-transcriptional regulatory networks in immunity. Immunol Rev 253:253–272

    Article  PubMed  Google Scholar 

  29. Beiter T, Hoene M, Prenzler F, Mooren FC, Steinacker JM, Weigert C, Nieß AM, Munz B (2015) Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev 21:42–57

    PubMed  Google Scholar 

  30. Schwerk J, Savan R (2015) Translating the Untranslated Region. J Immunol. 195:2963–2971

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohito Kakegawa.

Ethics declarations

Conflict of interest

The authors declare no financial conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakegawa, T., Miyazaki, A. & Yasukawa, K. Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds. J Nat Med 70, 653–660 (2016). https://doi.org/10.1007/s11418-016-0997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-016-0997-x

Keywords

Navigation