Journal of Natural Medicines

, Volume 69, Issue 4, pp 589–594 | Cite as

Phenolic compounds from the bark of Oroxylum indicum activate the Ngn2 promoter

  • Rolly G. Fuentes
  • Midori A. AraiEmail author
  • Samir K. Sadhu
  • Firoj Ahmed
  • Masami IshibashiEmail author


A reporter gene assay that detects neurogenin 2 (Ngn2) promoter activity was utilized to identify compounds that induce neuronal differentiation. Ngn2 is a basic helix-loop-helix transcription factor that activates transcription of pro-neural genes. Using this assay system and an activity-guided approach, seven phenolic compounds were isolated from the methanol extract of Oroxylum indicum: 1 oroxylin A, 2 chrysin, 3 hispidulin, 4 baicalein, 5 apigenin, 6 baicalin, and 7 isoverbascoside. Compounds 1 and 2 induced an estimated 2.7-fold increase in Ngn2 promoter activity, whereas 3 increased the activity by 2.5-fold. Furthermore, 1 and 2 enhanced neuronal differentiation of C17.2 cells, which are multipotent stem cells.

Graphical Abstract


bHLH Flavonoids Neurite 



We thank Prof. Dr. R. Kageyama for the Ngn2 plasmid. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS).


  1. 1.
    Merkle FT, Alvarez-Buylla A (2006) Neural stem cells in mammalian development. Curr Opin Cell Biol 18:704–709CrossRefPubMedGoogle Scholar
  2. 2.
    Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306:343–348CrossRefPubMedGoogle Scholar
  3. 3.
    Powell LM, Jarman AP (2008) Context dependence of proneural bHLH proteins. Curr Opin Genet Dev 18:411–417PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R (2013) Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342:1203–1208CrossRefPubMedGoogle Scholar
  5. 5.
    Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82:9–23CrossRefPubMedGoogle Scholar
  6. 6.
    Shimojo H, Ohtsuka T, Kageyama R (2008) Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58:52–64CrossRefPubMedGoogle Scholar
  7. 7.
    Shimojo H, Ohtsuka T (2011) Kageyama R (2011) Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci 5:78PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Katakura M, Hashimoto M, Shahdat HM, Gamoh S, Okui T, Matsuzaki K, Shido O (2009) Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience 160:651–660CrossRefPubMedGoogle Scholar
  9. 9.
    Li M, Tsang KS, Choi ST, Li K, Shaw PC, Lau KF (2011) Neuronal differentiation of C17.2 neural stem cells induced by a natural flavonoid, baicalin. ChemBioChem 12:449–456CrossRefPubMedGoogle Scholar
  10. 10.
    Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 38:65–81CrossRefPubMedGoogle Scholar
  11. 11.
    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Warashina M, Min KH, Kuwabara T, Huynh A, Gage FH, Schultz PG, Ding S (2006) A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew Chem Int Ed Engl 45:591–593CrossRefPubMedGoogle Scholar
  13. 13.
    Arai MA, Koryudzu K, Koyano T, Kowithayakorn T, Ishibashi M (2013) Naturally occurring Ngn2 promoter activators from Butea superba. Mol BioSyst 9:2489–2497CrossRefPubMedGoogle Scholar
  14. 14.
    Kim DH, Jeon SJ, Son KH, Jung JW, Lee S, Yoon BH, Lee JJ, Cho YW, Cheong JH, Ko KH, Ryu JH (2007) The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem 87:536–546CrossRefPubMedGoogle Scholar
  15. 15.
    Zeng YB, Yang N, Liu WS, Tang N (2003) Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. J Inorg Biochem 97:258–264CrossRefPubMedGoogle Scholar
  16. 16.
    Nazaruk J, Gudej J (2003) Flavonoid compounds from the flowers of Cirsium rivulare (Jacq). Acta Pol Pharm 60:87–89PubMedGoogle Scholar
  17. 17.
    Pegg RB, Amarowicz R, Oszmiański J (2005) Confirming the chemical structure of antioxidative trihydroxyflavones from Scutellaria baicalensis using modern spectroscopic methods. Pol J Food Nutr Sci 14(55):43–50Google Scholar
  18. 18.
    Ahn D, Lee SI, Yang JH, Cho CH, Hwang Y-H, Park J-H, Kim DK (2011) Superoxide radical scavengers from the whole plant of Veronica peregrina. Nat Prod Sci 17:142–146Google Scholar
  19. 19.
    Yuan Y, Hou W, Tang M, Luo H, Chen L-J, Guan YH, Sutherland IA (2008) Separation of flavonoids from the leaves of Oroxylum indicum HSCCC. Chromatographia 68:885–892CrossRefGoogle Scholar
  20. 20.
    Olivier DK, Shikanga EA, Combrinck S, Krause RWM, Regnier T, Dlamini TP (2010) Phenylethanoid glycosides from Lippia javanica. S Afr J Bot 76:58–63CrossRefGoogle Scholar
  21. 21.
    Lindhagen E, Nygren P, Larsson R (2008) The fluorometric microculture cytotoxicity assay. Nat Protocols 3:1364–1369CrossRefPubMedGoogle Scholar
  22. 22.
    Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569CrossRefPubMedGoogle Scholar
  23. 23.
    Lee S, Kim DH, Lee DH, Jeon SJ, Lee CH, Son KH, Jung JW, Shin CY, Ryu JH (2010) Oroxylin A, a flavonoid, stimulates adult neurogenesis in the hippocampal dentate gyrus region of mice. Neurochem Res 35:1725–1732CrossRefPubMedGoogle Scholar
  24. 24.
    Izuta H, Shimazawa M, Tazawa S, Araki Y, Mishima S, Hara H (2008) Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J Agric Food Chem 56:8944–8953CrossRefPubMedGoogle Scholar
  25. 25.
    Lundqvist J, El Andaloussi-Lilja J, Svensson C, Gustafsson Dorfh H, Forsby A (2013) Optimisation of culture conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In Vitro 27:1565–1569CrossRefPubMedGoogle Scholar
  26. 26.
    Kim S, Ghil SH, Kim SS, Myeong HH, Lee YD, Suh-Kim H (2002) Overexpression of neurogenin1 induces neurite outgrowth in F11 neuroblastoma cells. Exp Mol Med 34:469–475CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2015

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
  2. 2.Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
  3. 3.Department of Pharmaceutical ChemistryUniversity of DhakaDhakaBangladesh
  4. 4.University of the Philippines Visayas Tacloban CollegeTacloban CityPhilippines

Personalised recommendations