Skip to main content
Log in

Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT1A and 5-HT2A receptors

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) National comorbidity survey replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105

    Article  PubMed  Google Scholar 

  2. Musselman DL, Evans DL, Nemeroff CB (1998) The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry 55:580–592

    Article  CAS  PubMed  Google Scholar 

  3. Kessler RC, Soukup J, Davis RB, Foster DF, Wilkey SA, VanRompay MI, Eisenberg DM (2001) The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am J Psychiatry 158:289–294

    Article  CAS  PubMed  Google Scholar 

  4. Thachil AF, Mohan R, Bhugra D (2007) The evidence base of complementary and alternative therapies in depression. J Affect Disord 97:23–35

    Article  CAS  PubMed  Google Scholar 

  5. Muanda FN, Dicko A, Soulimani R (2010) Assessment of polyphenolic compounds, in vitro antioxidant and anti-inflammation properties of Securidaca longepedunculata root barks. C R Biol 333:663–669

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z (2004) Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 75:1659–1699

    Article  CAS  PubMed  Google Scholar 

  7. De la Cruz M (1991) CÓDICE DE LA CRUZ-BADIANO: Libellus de medicinalibus indorum herbis, 1st edn. Fondo de Cultura Economica, México

    Google Scholar 

  8. Guadarrama-Cruz G, Alarcón-Aguilar FJ, Lezama-Velasco R, Vázquez-Palacios G, Bonilla-Jaime H (2008) Antidepressant-like effects of Tagetes lucida Cav. in the forced swimming test. J Ethnopharmacol 12:277–281

    Article  Google Scholar 

  9. Guadarrama-Cruz G, Alarcón-Aguilar FJ, Vega-Ávila E, Vázquez-Palacios G, Bonilla-Baime H (2012) Antidepressant-like effect of the aqueous extract of Tagetes lucida Cav. in rats: involvement of the serotoninergic system. Am J Chin Med 40(4):753–768

    Article  Google Scholar 

  10. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotoninergic and noradrenergic antidepressants. Psychopharmacology (Berl.) 121:66–72

    Article  CAS  Google Scholar 

  11. Vazquez-Palacios G, Bonilla-Jaime H, Velázquez-Moctezuma J (2004) Antidepressant-like effects of the acute and chronic administration of nicotine in the forced swimming test and its interaction with fluoxetine. Pharmacol Biochem Behav 78:165–169

    Article  CAS  PubMed  Google Scholar 

  12. Dixon AK (1998) Ethological strategies for defence in animals and humans: their role in some psychiatric disorders. Br J Med Psychol 71(Pt 4):417–445

    Article  PubMed  Google Scholar 

  13. Müller S, Tirapelli CR, de Oliveira AM, Murillo R, Castro V, Merfort I (2003) Studies of ent-kaurane diterpenes from Oyedaea verbesinoides for their inhibitory activity on vascular smooth muscle contraction. Phytochemistry 63(4):391–396

    Article  PubMed  Google Scholar 

  14. Rodrigues AL, da Silva GL, Mateussi AS, Fernandes ES, Miguel OG, Yunes RA, Calixto JB, Santos AR (2002) Involvement of monoaminergic system in the antidepressant-like effect of the hydroalcoholic extract of Siphocampylus verticillatus. Life Sci 70(12):1347–1358

    Article  CAS  PubMed  Google Scholar 

  15. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, Sorant AJ, Papanicolaou GJ, Laje G, Fava M, Trivedi MH, Wisniewski SR, Manji H (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. J Hum Genet 78:804–814

    Article  CAS  Google Scholar 

  16. Christiansen L, Tan Q, Iachina M, Bathum L, Kruse TA, McGue M, Christensen K (2007) Candidate gene polymorphisms in the serotonergic pathway: influence on depression symptomatology in an elderly population. Biol Psych 61:223–230

    Article  CAS  Google Scholar 

  17. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  PubMed  Google Scholar 

  18. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  CAS  PubMed  Google Scholar 

  19. Hensler JG (2002) Differential regulation of 5-HT1A receptors—G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26:565–573

    Article  CAS  PubMed  Google Scholar 

  20. O’Neill MF, Conway MW (2001) Role of 5-HT1A and 5-HT1B receptors in the mediation of behavior in the forced swim test in mice. Neuropsychopharmacology 24:391–398

    Article  PubMed  Google Scholar 

  21. Rénéric JP, Bouvard M, Stinus L (2001) Idazoxan and 8-OH-DPAT modify the behavioral effects induced by either NA, or 5-HT, or dual NA/5-HT reuptake inhibition in the rat forced swimming test. Neuropsychopharmacology 24:379–390

    Article  PubMed  Google Scholar 

  22. Luscombe GP, Martin KF, Hutchins LJ, Gosden J, Heal DJ (1993) Mediation of the antidepressant-like effect of 8-OH-DPAT in mice by postsynaptic 5-HT1A receptors. Br J Pharmacol 108:669–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl.) 192(3):357–371

    Article  Google Scholar 

  24. Eckeli AL, Dach F, Rodrigues AL (2000) Acute treatments with GMP produce antidepressant-like effects in mice. Neuroreport 11(9):1839–1843

    Article  CAS  PubMed  Google Scholar 

  25. Gavioli EC, Vaughan CW, Marzola G, Guerrini R, Mitchell VA, Zucchini S, De Lima TC, Rae GA, Salvadori S, Regoli D, Calo G (2004) Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn Schmiedebergs Arch Pharmacol 369:547–553

    Article  CAS  PubMed  Google Scholar 

  26. Harkin A, Shanahan E, Kelly JP, Connor TJ (2003) Methylenendioxyamphetamine produces serotonin nerve terminal loss and diminished behavioral and neurochemical responses to the antidepressant fluoxetine. Eur J Neurosci 18:1021–1027

    Article  PubMed  Google Scholar 

  27. Wieland S, Lucki I (1990) Antidepressant-like activity of 5-HT1A agonists measured with the forced swim test. Psychopharmacology (Berl.) 101:497–504

    Article  CAS  Google Scholar 

  28. Chojnacka-Wojcik E, Tatarczynska E, Golembiowska K, Przegalinski E (1991) Involvement of 5-HT1A receptors in the antidepressant-like activity of gepirone in the forced swimming test in rats. Neuropharmacology 30:711–717

    Article  CAS  PubMed  Google Scholar 

  29. Albert PR (2012) Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 367:2402–2415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Artigas F, Perez V, Alvarez E (1994) Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 51(3):248–251

    Article  CAS  PubMed  Google Scholar 

  31. Cunha MP, Pazini FL, Oliveira Á, Machado DG, Rodrigues AL (2013) Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Res Bull 95:61–69. doi:10.1016/j.brainresbull.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  32. Cryan JF, Leonard BE (2000) 5-HT1A and beyond: the role of serotonin and its receptors in depression and the antidepressant response. Hum Psychopharmacol 15:113–135

    Article  CAS  PubMed  Google Scholar 

  33. Cryan JF, Lucki I (2000) Antidepressant-like behavior effects mediated by 5-hydroxytryptamine (2C) receptors. J Pharmacol Exp Ther 295:1120–1126

    CAS  PubMed  Google Scholar 

  34. Boothman LJ, Mitchell SN, Sharp T (2006) Investigation of the SSRI augmentation properties of 5-HT2 receptor antagonists using in vivo microdialysis. Neuropharmacology 50:726–732

    Article  CAS  PubMed  Google Scholar 

  35. Zomkowski ADE, Rosa AO, Lin J, Santos ARS, Calixto JB, Rodrigues ALS (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant-like effect in the mouse forced swimming test. Brain Res 1023:253–263

    Article  CAS  Google Scholar 

  36. Khisti RT, Chopde CT (2000) Serotonergic agents modulate antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice. Brain Res 865:291–300

    Article  CAS  PubMed  Google Scholar 

  37. Barauna SC, Kaster MP, Heckert BT, Nascimento KS, Rossi FM, Teixeira EH, Cavada BS, Rodrigues AL, Leal RB (2006) Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 85:160–169

    Article  CAS  PubMed  Google Scholar 

  38. Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28:435–451

    Article  CAS  PubMed  Google Scholar 

  39. Taylor S, Stein MB (2005) The future of selective serotonin reuptake inhibitors (SSRIs) in psychiatric treatment. Med Hypotheses 66:14–21

    Article  PubMed  Google Scholar 

  40. Lucki I, Singh A, Kreiss DS (1994) Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev 18:85–95

    Article  CAS  PubMed  Google Scholar 

  41. Tanda G, Carboni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology (Berl.) 115:285–288

    Article  CAS  Google Scholar 

  42. Souza LC, de Gomes MG, Goes AT, Del Fabbro L, Filho CB, Boeira SP (2010) Jesse CR (2013) Evidence for the involvement of the serotonergic 5-HT(1A) receptors in the antidepressant-like effect caused by hesperidin in mice. Prog Neuropsychopharmacol Biol Psych 10(40):103–109. doi:10.1016/j.pnpbp.2012.09.003

    Google Scholar 

  43. Bhutada P, Mundhada Y, Bansod K, Ubgade A, Quazi M, Umathe S, Mundhada D (2010) Reversal by quercetin of corticotrophin releasing factor induced anxiety and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psych 34:955–960

    Article  CAS  Google Scholar 

  44. Volke V, Wegener G, Bourin M, Vasar E (2003) Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res 140(1–2):141–147

    Article  CAS  PubMed  Google Scholar 

  45. Sevgi S, Ozek M, Eroglu L (2006) L-NAME prevents anxiety-like and depression-like behavior in rats exposed to restraint stress. Methods Find Exp Clin Pharmacol 28(2):95–99

    Article  CAS  PubMed  Google Scholar 

  46. Spolidório PC, Echeverry MB, Iyomasa M, Guimarães FS, Del Bel EA (2007) Anxiolytic effects induced by inhibition of the nitric oxide-cGMP pathway in the rat dorsal hippocampus. Psychopharmacology (Berl.) 195(2):183–192

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported by a grant from CONACyT (212823) in the form of a Fellowship awarded to Gabriela Guadarrama Cruz as part of her Doctoral research in Experimental Biology. We thank Mtra. Tania Banderas for the HPLC analysis of Tagetes lucida Cav.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bonilla-Jaime.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonilla-Jaime, H., Guadarrama-Cruz, G., Alarcon-Aguilar, F.J. et al. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT1A and 5-HT2A receptors. J Nat Med 69, 463–470 (2015). https://doi.org/10.1007/s11418-015-0909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0909-5

Keywords

Navigation