Skip to main content
Log in

Chemical structures of constituents from the flowers of Osmanthus fragrans var. aurantiacus

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Three new megastigmane glycosides named floraosmanosides I–III and a new γ-decalactone named floraosmanolactone I together with 16 known constituents were isolated from the flowers of Osmanthus fragrans var. aurantiacus cultivated in Guangxi Zhuang Autonomous Region, China. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. Among them, ligustroside and (+)-pinoresinol significantly inhibited nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Yoo KH, Park J-H, Lee DK, Fu YY, Baek NI, Chung IS (2013) Pomolic acid induces apoptosis in SK-OV-3 human ovarian adenocarcinoma cells through the mitochondrial-mediated intrinsic and death receptor-induced extrinsic pathways. Oncol Lett 5:386–390

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Lee DG, Lee SM, Bang MH, Park H-J, Lee TH, Kim YH, Kim JY, Baek NI (2011) Lignans from the flowers of Osmanthus fragrans var. aurantiacus and their inhibition effect on NO production. Arch Pharm Res 34:2029–2035

    Article  CAS  PubMed  Google Scholar 

  3. Lee DG, Park JH, Yoo K-H, Chung I-S, Lee Y-H, Lee J-K, Han D-S, Cho S-M, Baek N-I (2011) 24-ethylcholesta-4,24(28)-dien-3,6-dione from Osmanthus fragrans var. aurantiacus flowers inhibits the growth of human colon cancer cell line, HCT-116. J Korean Soc Appl Bi 54:206–210

    CAS  Google Scholar 

  4. Lee D-G, Choi J-S, Yeon S-W, Cui E-J, Park H-J, Yoo J-S, Chung I-S, Baek N-I (2010) Secoiridoid glycoside from the flowers of Osmanthus fragrans var. aurantiacus makino inhibited the activity of β-secretase. J Korean Soc Appl Bi 53:371–374

    Article  CAS  Google Scholar 

  5. Matsumoto T, Nakamura S, Fujimoto K, Ohta T, Ogawa K, Yoshikawa M, Matsuda H (2014) Structure of constituents isolated from the flower buds of Cananga odorata and their inhibitory effects on aldose reductase. J Nat Med 68:1–8. doi:10.1007/s11418-014-0843-y

    Article  Google Scholar 

  6. Fujimoto K, Nakamura S, Matsumoto T, Ohta T, Yoshikawa M, Ogawa K, Kashiwazaki E, Matsuda H (2014) Structures of acylated sucroses from the flower buds of Prunus mume. J Nat Med 68:481–487

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto T, Nakamura S, Ohta T, Fujimoto K, Yoshikawa M, Ogawa K, Matsuda H (2014) A rare glutamine derivative from the flower buds of daylily. Org Lett 16:3076–3078

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto T, Nakamura S, Nakashima S, Fujimoto K, Yoshikawa M, Ohta T, Ogawa K, Matsuda H (2014) Lignan dicarboxylates and terpenoids from the flower buds of Cananga odorata and their inhibitory effects on melanogenesis. J Nat Prod 77:990–999

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura S, Fujimoto K, Matsumoto T, Nakashima S, Ohta T, Ogawa K, Matsuda H, Yoshikawa M (2013) Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effects on melanogenesis. Phytochemistry 92:128–136

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Nakamura S, Matsuda H, Yoshikawa M (2013) Hydrangeamines A and B, novel polyketide-type pseudoalkaloid-coupled secoiridoid glycosides from the flowers of Hydrangea macrophylla var. thunbergii. Tetrahedron Lett 54:32–34

    Article  CAS  Google Scholar 

  11. Nakamura S, Fujimoto K, Matsumoto T, Ohta T, Ogawa K, Tamura H, Matsuda H, Yoshikawa M (2013) Structures of acylated sucroses and an acylated flavonol glycoside and inhibitory effects of constituents on aldose reductase from the flower buds of Prunus mume. J Nat Med 67:799–806

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, Fujimoto K, Matsumoto T, Sakuma R, Ohta T, Ogawa K, Nishida S, Miki H, Matsuda H, Muraoka O, Yoshikawa M (2013) Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem 21:779–787

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura S, Fujimoto K, Nakashima S, Matsumoto T, Miura T, Uno K, Matsuda H, Yoshikawa M (2012) Medicinal flowers. XXXVI. Acylated oleanane-type triterpene saponins with inhibitory effects on melanogenesis from the flower buds of Chinese Camellia japonica. Chem Pharm Bull 60:752–758

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura S, Moriura T, Park S, Fujimoto K, Matsumoto T, Ohta T, Matsuda H, Yoshikawa M (2012) Melanogenesis inhibitory and fibroblast proliferation accelerating effects of noroleanane- and oleanane-type triterpene oligoglycosides from the flower buds of Camellia japonica. J Nat Prod 75:1425–1430

    Article  CAS  PubMed  Google Scholar 

  15. Guo W, Sakata K, Watanabe N, Nakajima R, Yagi A, Ina K, Luo S (1993) Geranyl 6-O-β-d-xylopyranosyl-β-d-glucopyranoside isolated as an aroma precursor from tea leaves for oolong tea. Phytochemistry 33:1373–1375

    Article  CAS  PubMed  Google Scholar 

  16. Yu Y, Gao H, Dai Y, Wang Y, Chen H-R, Yao X-S (2010) Monoterpenoids from the fruit of Gardenia jasminoides. Helv Chim Acta 93:763–771

    Article  CAS  Google Scholar 

  17. Jackson HL, Nadolski GT, Braun C, Lockwood SF (2005) Efficient total synthesis of lycophyll (ϕ, ϕ-carotene-16,16′-diol). Org Process Res Dev 9:830–836

    Article  CAS  Google Scholar 

  18. Nakai T, Yajima A, Akasaka K, Kaihoku T, Ohtaki M, Nukada T, Ohrui H, Yabuta G (2005) Synthesis of the four stereoisomers of 2,6-dimethyloctane-1,8-dioic acid, a component of the copulation release pheromone of the cowpea weevil, Callosobruchus maculatus. Biosci Biotechnol Biochem 69:2401–2408

    Article  CAS  PubMed  Google Scholar 

  19. Inouye H, Inoue K, Nishioka T, Kaniwa M (1975) Monoterpene glucosides and related natural products. 29. Two new iridoid glucosides from Osmanthus fragrans. Phytochemistry 14:2029–2032

    Article  CAS  Google Scholar 

  20. Bai N, He K, Ibarra A, Bily A, Roller M, Chen X, Ruhl R (2010) Iridoids from Fraxinus excelsior with adipocyte differentiation-inhibitory and PPARα. J Nat Prod 73:2–6

    Article  CAS  PubMed  Google Scholar 

  21. Sakamoto S, Machida K, Kikuchi M (2009) Secoiridoid di-glycosides from Osmanthus ilicifolius. Heterocycles 77:557–563

    Article  CAS  Google Scholar 

  22. Kikuchi M, Yamauchi Y, Takahashi Y, Sugiyama M (1989) Studies on the constituents of Syringa species. VIII. Isolation and structures of phenylpropanoid glycosides from the leaves of Syringa reticulata (Blume) Hara. Yakugaku Zasshi 109:366–371

    CAS  Google Scholar 

  23. Kobayashi H, Oguchi H, Takizawa N, Miyase T, Ueno A, Usmanghani K, Ahmad M (1987) New phenylethanoid glycosides from Cistanche tubulosa (Schrenk) Hook. f.I. Chem Pharm Bull 35:3309–3314

    Article  CAS  Google Scholar 

  24. Deyama T, Ikawa T, Kitagawa S, Nishibe S (1987) The constituents of Eucommia ulmoides Oliv. V. Isolation of dihydroxydehydrodiconiferyl alcohol isomers and phenolic compounds. Chem Pharm Bull 35:1785–1789

    Article  CAS  Google Scholar 

  25. Kwak JH, Kang MW, Roh JH, Choi SU, Zee OP (2009) Cytotoxic phenolic compounds from Chionanthus retusus. Arch Pharm Res 32:1681–1687

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I (2007) Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull 55:899–901

    Article  CAS  PubMed  Google Scholar 

  27. Linares-Palomino PJ, Salido S, Altarejos J, Nogueras M, Sánchez A (2006) Synthesis and odor evaluation of stereoisomers of octahydrobenzopyran derivatives. Flavour Fragr J 21:659–666

    Article  CAS  Google Scholar 

  28. Matsunami K, Otsuka H, Takeda Y (2010) Structural revisions of blumenol C glucoside and byzantionoside B. Chem Pharm Bull 58:438–441

    Article  CAS  PubMed  Google Scholar 

  29. Dieskau A P, Begouin J-M, Plietker B (2011) Bu4N[Fe(CO)3(NO)]-catalyzed hydrosilylation of aldehydes and ketones. Eur J Org Chem 2011:5291–5296

  30. Fuji K, Node M, Terada S, Murata M, Nagasawa H (1985) Enantioselective lactonization of sodium 4-hydroxypimelate under abiological conditions. J Am Chem Soc 107:6404–6406

    Article  CAS  Google Scholar 

  31. Hegazy MEF, Matsuda H, Nakamura S, Yabe M, Matsumoto T, Yoshikawa M (2012) Sesquiterpenes from an Egyptian herbal medicine, Pulicaria undulata, with inhibitory effects on nitric oxide production in RAW264.7 macrophage cells. Chem Pharm Bull 60:363–370

    Article  CAS  PubMed  Google Scholar 

  32. Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, Yoshikawa M (2011) Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol 136:488–495

    Article  CAS  PubMed  Google Scholar 

  33. Bai N, He K, Roller M, Lai C-S, Shao X, Pan M-H, Ho C-T (2013) Secoiridoid glucosides from fraxinus excelsior with effects on LPS-induced nitrite production in RAW264.7 macrophages and human cancer cell lines., ACS symposium series 1127. African natural plant products Volume II: discoveries and challenges in chemistry, health, and nutrition, pp 115–125

    Google Scholar 

  34. Yang C-P, Huang G-J, Huang H-C, Chen Y-C, Chang C-I, Wang S-Y, Chang H-S, Tseng Y-H, Chien S-C, Kuo Y-H (2013) The effect of the aerial part of Lindera akoensis on lipopolysaccharides (LPS)-induced nitric oxide production in RAW264.7 cells. Int J Mol Sci 14:9168–9181

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hosokawa A, Sumino M, Nakamura T, Yano S, Sekine T, Ruangrungsi N, Watanabe K, Ikegami F (2004) A new lignan from Balanophora abbreviata and inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. Chem Pharm Bull 52:1265–1267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Ministry of Education, Culture, Sports, Science and Technology (MEXT)-Supported Program for the Strategic Research Foundation at Private Universities and by JSPS KAKENHI Grant Number 26460135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Nakamura, S., Xu, B. et al. Chemical structures of constituents from the flowers of Osmanthus fragrans var. aurantiacus . J Nat Med 69, 135–141 (2015). https://doi.org/10.1007/s11418-014-0869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0869-1

Keywords

Navigation