Skip to main content

Advertisement

Log in

Effect of Scutia buxifolia Reissek in nucleotidase activities and inhibition of platelet aggregation

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This study aimed to determine the effect of lyophilized aqueous extracts of Scutia buxifolia on NTPDase and 5′-nucleotidase activity on platelets and lymphocytes as well as the profile of the platelet aggregation. In vitro tests were used to investigate the effect of the aqueous crude extract obtained from S. buxifolia leaves (SbL) and stem bark (SbS) on enzymatic activities and platelet aggregation. The platelets and lymphocytes were exposed to lyophilized aqueous extracts of S. buxifolia at concentrations of 1–200 μg/mL in the presence of ATP, ADP, AMP as substrates, during the enzymatic assay, as well as the platelet aggregation. The results showed that SbS and SbL potently inhibited NTPDase and 5′-nucleotidase in platelets and lymphocytes. ADP-induced aggregation was inhibited by the SbS (50, 100, and 200 μg/mL) and SbL (200 μg/mL). In addition, these results suggest that S. buxifolia have compounds, such as gallic acid, chlorogenic acid, caffeic acid, quercetin, rutin, and kaempferol, which cause a decrease the NTPDase and 5′-nucleotidase activity, resulting in alterations in adenine nucleotide levels and protection against ADP-induced platelet aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (WHO) (2008) Regulatory situation of herbal medicines: a worldwide review. WHO, Geneva, p 45

    Google Scholar 

  2. Agra MF, Freitas PF, Barbosa-Filho JM (2007) Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn 17:114–140

    Article  Google Scholar 

  3. Silva C, Souza J, Mota V, Pereira M, Silva S (2009) Antimicrobial activity of crude extract of Brazilian tree leaves against Staphylococcus aureus. New Biotechnol 25:S7

    Article  Google Scholar 

  4. De Bona KS, Bellé LB, Sari MH, Thomé G, Schetinger MRC, Morsch VM, Boligon AA, Athayde ML, Pigatto AS, Moretto MB (2010) Syzygium cumini Extract decrease Adenosine Deaminase, 5′ Nucleotidase activities and oxidative damage in platelets of diabetic patients. Cell Physiol Biochem 26:729–738

    Article  PubMed  Google Scholar 

  5. Boligon AA, Pereira RP, Feltrin AC, Machado MM, Janovik V, Rocha JBT, Athayde ML (2009) Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresour Technol 100:6592–6598

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128

    Article  CAS  PubMed  Google Scholar 

  8. Schetinger MR, Morsch VM, Bonan CD, Wyse AT (2007) NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. BioFactors 31:77–98

    Article  CAS  PubMed  Google Scholar 

  9. Pilla C, Emanuelli T, Frasetto SS, Battastini AMO, Dias RD, Sarkis JJF (1996) ATP diphosphohydrolase activity (apyrase EC 3. 6. 1. 5) in human blood platelets. Platelets 7:225–230

    Article  CAS  PubMed  Google Scholar 

  10. Koziak K, Sévigny J, Robson SJ, Siegel JB, Kaczmarek E (1999) Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thromb Haemostasis 82:1538–1544

    CAS  Google Scholar 

  11. Leal DBR, Streher CA, Neu TN, Bittencourt FP, Leal CAM, Silva JEP, Morsch VM, Schetinger MR (2005) Characterization of NTPDase (NTPDase 1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta 1721:9–15

    Article  CAS  PubMed  Google Scholar 

  12. Ralevic V, Burnstock G (2003) Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect 16:133–140

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann H (2001) Ectonucleotidases: some recent developments and note on nomenclature. Drug Develop Res 52:44–56

    Article  CAS  Google Scholar 

  14. Vollmayer P, Koch M, Braun N, Heine P, Servos J, Israr E, Kegel B, Zimmermann HJ (2001) Multiple ecto-nucleotidases in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 78:1019–1028

    Article  CAS  PubMed  Google Scholar 

  15. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–555

    Article  CAS  PubMed  Google Scholar 

  16. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wasicky R, Wasicky M, Joachimovits R (1964) Erstuntersuchungen na Coronilha–Scutia buxifolia Reissek. Planta Med 12:13–25

    Article  CAS  Google Scholar 

  19. Da Silva RCVAF, Crestania S, Souza P, Boligon AA, Athayde ML, Santos ARS, Marques MCA, Kassuyad CAL, Da Silva-Santos JE (2012) Endothelium-dependent and independent vasorelaxation induced by an n-butanolic fraction of bark of Scutia buxifolia Reiss (Rhamanaceae). J Ethnopharmacol 141:997–1004

    Article  Google Scholar 

  20. Morel FA, Maldaner G, Ilha V, Missau F, Silva FU, Dalcol I (2005) Cyclopeptide alkaloids from Scutia buxifolia Reiss and their antimicrobial activity. Phytochemistry 66:2571–2576

    Article  CAS  PubMed  Google Scholar 

  21. Boligon AA, Janovik V, Frohlich JK, Spader TB, Froeder ALF, Alves SH, Athayde ML (2012) Antimicrobial and cytotoxic activities of leaves, twigs and stem bark of Scutia buxifolia Reissek. Nat Prod Res 26:939–944

    Article  CAS  PubMed  Google Scholar 

  22. Trevisan G, Maldaner G, Velloso NA, Sant’Anna GS, Ilha V, Gewehr CCV, Rubin MA, Morel AM, Ferreira J (2009) Antinociceptive effects of 14-membered cyclopeptide alkaloids. J Nat Prod 72:608–612

    Article  CAS  PubMed  Google Scholar 

  23. Boligon AA, Agertt V, Janovik V, Cruz RC, Campos MMA, Guillaume D, Athayde ML, dos Santos ARS (2012) Antimycobacterial activity of the fractions and compounds from Scutia buxifolia. Brazilian J Pharmacog 22:45–52

    CAS  Google Scholar 

  24. Colpo E, Vilanova CDDA, Reetz LGB, Duarte MMMF, Farias ILG, Meinerz DF, Mariano DOC, Vendrusculo RG, Boligon AA, Corte CLD, Wagner R, Athayde ML, Rocha JBT (2014) Brazilian nut consumption by healthy volunteers improves inflammatory parameters. Nutrition 30:459–465

    Article  CAS  PubMed  Google Scholar 

  25. Lunkes GI, Lunkes D, Stefanello F, Morsch A, Morsch VM, Mazzanti CM, Schetinger MR (2003) Enzymes that hydrolyze adenine nucleotides in diabetes and associated pathologies. Thromb Res 109:189–194

    Article  CAS  PubMed  Google Scholar 

  26. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1. Scand J Clin Lab Invest 97:77–89

    Google Scholar 

  27. Chan K, Delfert D, Junger KD (1986) A direct colorimetric assay for the Ca2+-ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  28. Born GV, Cross MJ (1963) The aggregation of blood platelets. J Physiol 168:178–195

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254

    Article  Google Scholar 

  30. Pierdoná TM, Lima NR, Rodrigues RCM, Teixeira JP, Gonçalves RP, Fontenele JB, Vasconcelos SMM, Viana GSB, Leal LKAM (2014) The Operculina macrocarpa (L.) urb. (jalapa) tincture modulates human blood platelet aggregation. J Ethnopharmacol 151:151–157

    Article  PubMed  Google Scholar 

  31. Gadi D, Bnouham M, Aziz M, Ziyyat A, Legssyer A, Bruel A, Berrabah M, Legrand C, Fauvel-Lafeve F, Mekhfi H (2012) Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow. J Complement Integr Med 9:19

    Article  Google Scholar 

  32. Cho HJ, Kang HJ, Kim YJ, Lee DH, Kwon HW, Kim YY, Park HJ (2012) Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP dependent manner. Blood Coagul Fibrinolysis 23:629–635

    Article  CAS  PubMed  Google Scholar 

  33. Lim MY, Park YH, Kim MK (2004) Antiplatelet activity of gallic acid and methyl gallate. Food Sci Biotechnol 13:806–809

    CAS  Google Scholar 

  34. Da Silva AC, Balz D, De Souza JB, Morsch VM, Corrêa MC, Zanetti GD, Manfron MP, Schetinger MR (2006) Inhibition of NTPDase, 5′-nucleotidase, Na+/K+-ATPase and acetylcholinesterase activities by subchronic treatment with Casearia sylvestris. Phytomedicine 13:509–514

    Article  PubMed  Google Scholar 

  35. Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42:3–8

    Article  CAS  PubMed  Google Scholar 

  36. Burnstock G (1988) Sympathetic purinergic transmission in small blood vessels. Trends Pharmacol Sci 9:116–117

    Article  CAS  PubMed  Google Scholar 

  37. Folkow B (1949) The vasodilator action of adenosine triphosphate. Acta Physiol Scand 17:311–316

    Article  CAS  PubMed  Google Scholar 

  38. Rongen GA, Smits P, Thien T (1994) Characterization of ATP-induced vasodilation in the human forearm vascular bed. Circulation 90:1891–1897

    Article  CAS  PubMed  Google Scholar 

  39. Ellsworth ML (2004) Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc 36:35–41

    Article  CAS  PubMed  Google Scholar 

  40. Hashimoto M, Shinozuka K, Shahdat HM, Kwon YM, Tanabe Y, Kunitomo M, Masumura S (1998) Antihypertensive effect of all-cis-5,8,11,14,17-icosapentaenoate of aged rats is associated with an increase in the release of ATP from the caudal artery. J Vasc Res 35:55–62

    Article  CAS  PubMed  Google Scholar 

  41. Wihlborg AK, Malmsjö M, Eyjolfsson A, Gustafsson R, Jacobson K, Erlinge D (2003) Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor. Br J Pharmacol 138:1451–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bakker WW, Poelstra A, Barradas K, Mikhailidis MA (1994) Platelets and ectonucleotidases. Platelets 5:121–129

    Article  CAS  PubMed  Google Scholar 

  43. Pinsky DJ, Broekman MJ, Peschon JJ, Stocking KL, Fujita T, Ramasamy R, Connolly ES Jr, Huang J, Kiss S, Zhang Y, Choudhri TF, McTaggart RA, Liao H, Drosopoulos JH, Price VL, Marcus AJ (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest 109:1031–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Soslau G, Parker J (1989) Modulation of platelet function by extracellular adenosine triphosphate. Blood 74:984–993

    CAS  PubMed  Google Scholar 

  45. Soslau G, McKenzie RJ, Brodsky I, Devlin TM (1995) Extracellular ATP inhibits agonist-induced mobilization of internal calcium in human platelets. Biochim Biophys Acta 1268:73–80

    Article  PubMed  Google Scholar 

  46. Soslau G, Youngprapakorn D (1997) A possible dual physiological role of extracellular ATP in the modulation of platelet aggregation. Biochim Biophys Acta 1355:131–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by governmental funds: CNPq and CAPES.

Conflict of interest

All the authors deny any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Augusti Boligon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boligon, A.A., Pimentel, V.C., Bagatini, M.D. et al. Effect of Scutia buxifolia Reissek in nucleotidase activities and inhibition of platelet aggregation. J Nat Med 69, 46–54 (2015). https://doi.org/10.1007/s11418-014-0858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0858-4

Keywords

Navigation