Skip to main content

Advertisement

Log in

Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The present study investigated inhibition of pancreatic lipase and metabolic effects of high caloric diet in rats. The Passiflora nitida hydroethanol leaf extract (PNE) was used in in vitro assays or administered to rats to study dyslipidemia. Inhibition of lipase in vitro was studied by a spectrophotometric assay using orlistat as the positive control. The effects of PNE on reduction of postprandial triglyceride were studied by oral fat-overloading in rats. Metabolic alterations were induced using the cafeteria diet and 4 weeks post-treatment with PNE or orlistat and blood samples were collected and biochemical analyses were performed. Liver and retroperitoneal fat tissues were obtained to analyze weight and steatosis. IC50 (μg/mL) values for pancreatic lipase inhibition were 21.2 ± 0.8 and 0.1 ± 0.01 for PNE and orlistat, respectively. Oral administration of lipid emulsion resulted in postprandial hypertriglyceridemia at 3 h postadministration and when rats were then administered PNE and orlistat there was decreased of triglyceride levels by 15 % compared to control. Although the energy consumption by the cafeteria diet had been higher, there was no significant weight gain observed in the study groups. The cafeteria diet resulted in a significant increase of weight in the retroperitoneal fat and hypertriglyceridemia levels that could be significantly reduced by PNE and orlistat treatment. We hypothesized that PNE administration prevented the hypertriglyceridemia in rats with a high caloric diet, possibly owing to reduction of lipid absorption and pancreatic lipase inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adisakwattana S, Moonrat J, Srichairat S, Chanasit C, Tiraponporn H, Chanathong B, Ngamukote S, Makynen K, Sapwarobol S (2010) Lipid-lowering mechanisms of grape seed extract (Vitis vinifera L) and its antihyperlidemic activity. J Med Plants Res 4:2113–2120

    Google Scholar 

  2. França E, Alves JGB (2006) Dislipidemia entre crianças e adolescentes de Pernambuco. Arq Bras Cardiol 87:722–727

    Article  PubMed  Google Scholar 

  3. Robins SJ, Lyass A, Zachariah JP, Massaro JM, Vasan RS (2011) Insulin resistance and the relationship of a dyslipidemia to coronary heart disease: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 31:1208–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gupta H, Pawar D, Riva A, Bombardelli E, Morazzoni P (2012) A randomized, double-blind, placebo-controlled trial to evaluate efficacy and tolerability of an optimized botanical combination in the management of patients with primary hypercholesterolemia and mixed dyslipidemia. Phytother Res 26:265–272

    Article  CAS  PubMed  Google Scholar 

  5. Garza AL, Milagro FI, Boque N, Campión J, Martínez JA (2011) Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med 77(8):773–785

    Article  PubMed  Google Scholar 

  6. Tucci SA, Boyland EJ, Halford JCG (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutics agents. Diabetes Metab Syndr Obes 3:125–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Prasad H, Ryan DA, Celzo MF, Stapleton D (2012) Metabolic syndrome: definition and therapeutic implications. Postgrad Med 124:21–30

    Article  PubMed  Google Scholar 

  8. Psaty BM, Rivara FP (2012) Universal screening and drug treatment of dyslipidemia in children and adolescents. JAMA 307:257–258

    CAS  PubMed  Google Scholar 

  9. Oliveira VB, Yamada LT, Fagg CW, Brandão MGL (2012) Native foods from Brazilian biodiversity as a source of bioactive compounds. Food Res Int 48:170–179

    Article  CAS  Google Scholar 

  10. Dembitsky VM, Poovarodom S, Leontowicz H, Leontowicz M, Vearasilp S, Trakhtenberg S, Gorinstein S (2011) The multiple nutrition properties of some exotic fruits: biological activity and active metabolites. Food Res Int 44:1671–1701

    Article  CAS  Google Scholar 

  11. Beraldo J, Kato ETM (2010) Morfoanatomia de folhas e caules de Passiflora edulis Sims, Passifloraceae. Rev Bras Farmacog 20:233–239

    Article  Google Scholar 

  12. Zucolotto SM, Palermo JAE, Schenkel EP (2006) Estudo fitoquímico das raízes de Passiflora edulis forma flavicarpa Degener. Acta Farm Bonaerense 25:5–9

    CAS  Google Scholar 

  13. Abreu PP, Souza MM, Santos EA, Pires MV, Pires MM, Almeida AAF (2009) Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166:307–315

    Article  Google Scholar 

  14. Carvalho MJ, Pedrosa TN, Guilhon-Simplicio F, Nunez CV, Ohana DT, Pereira MM, Lima ES (2010) Estudo farmacognóstico e atividade in vitro sobre a coagulação sanguínea e agregação plaquetária das folhas de Passiflora nitida Kunth (Passifloraceae). Acta Amaz 40:199–206

    Article  Google Scholar 

  15. McDougall GJ, Kulkarni NN, Stewart D (2009) Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115:193–199

    Article  CAS  Google Scholar 

  16. Pastore AP, Cesaretti MLR, Ginoza M, Voltera AL, Kohlmann JO (2010) Effects of the association of experimental neuroendocrine and exocrine obesity on tail blood pressure and glucose metabolism in Wistar rats. J Bras Nefrol 32:195–200

    Article  PubMed  Google Scholar 

  17. Helrich K (1990) Methods 920.39 and 978.04. In: AOAC: Official methods of analysis, vol 1. Association of Official Analytical Chemists, Inc., Arlington

  18. Núcleo de Estudos e Pesquisas em Alimentação (2006). Tabela brasileira de composição de alimentos: versão II. Campinas: NEPA-UNICAMP 105p

  19. FAO Food and Agriculture Organization of the United Nations and LATINFOODS (2009). Tabla de Composición de Alimentos de América Latina. http://www.rlc.fao.org/es/conozca-fao/que-hace-fao/estadisticas/composicion-alimentos/componentes. Accessed Dec 2012

  20. Jang HH, Park MY, Kim HW, Lee YM, Hwang KA, Park JH, Park DS, Kwon O (2012) Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6J mice fed a high-fat diet via fatty acid oxidation. Nutr Metab 9:27–38

    Article  CAS  Google Scholar 

  21. Aizza LCB, Dornelas MC (2011) A genomic approach to study anthocyanin synthesis and flower pigmentation in passion flowers. J Nucleic Acids 2011:1–17

    Article  Google Scholar 

  22. Bendini A, Cerretani L, Pizzolante L, Toschi TG, Guzzo F, Ceoldo S, Marconi AM, Levi FAM (2006) Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. Eur Food Res Technol 223:102–109

    Article  CAS  Google Scholar 

  23. Galleano M, Calabro V, Prince PD, Litterio MC, Potrkowski B, Vazquez-Prieto MA, Miatelo RM, Oteiza PI, Fraga CG (2012) Flavonoids and metabolic syndrome. Ann NY Acad Sci 1259:87–94

    Article  CAS  PubMed  Google Scholar 

  24. Pizziolo VR, Brasileiro BG, Oliveira TT, Vagem TJ (2011) Plantas com possível atividade hipolipidêmica: uma revisão bibliográfica de livros editados no Brasil entre 1998 e 2008. Rev Bras Plantas Med 13(1):98–109

    Article  Google Scholar 

  25. Sashidhara KV, Kumara A, Kumara M, Sonkarb R, Bhatia G, Khanna AK (2010) Novel coumarin derivatives as potential antidyslipidemic agents. Bioorg Med Chem Lett 20:4248–4251

    Article  CAS  PubMed  Google Scholar 

  26. Eri EM, Murray WH (2012) Citrus flavonoids and the prevention of atherosclerosis. Cardiovasc Haematol Disord 12:84–91

    Google Scholar 

  27. Roh C, Jung U (2012) Screening of crude plant extracts with anti-obesity activity. Int J Mol Sci 13:1710–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Souza SP, Pereira LLS, Souza AA, Santos CD (2011) Inhibition of pancreatic lipase by extracts of Baccharis trimera: evaluation of antinutrients and effect on glycosidases. Braz J Pharmacogn 21:450–455

    Google Scholar 

  29. Zheng CD, Duan YQ, Gao JM, Ruan ZG (2010) Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. J Chin Med Assoc 73:319–324

    Article  CAS  PubMed  Google Scholar 

  30. Conforti F, Perri V, Menichni F, Marrelli M, Uzunov D, Statti GA, Menichini F (2012) Wild Mediterranean dietary plants as inhibitors of pancreatic lipase. Phytother Res 26:600–604

    Article  CAS  PubMed  Google Scholar 

  31. Kaewpiboon C, Lirdprapamongkol K, Srisomsap C, Winayanuwattikun P, Yongvanich T, Puwaprisirisan P, Svasti J, Assavalapsakul W (2012) Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complement Altern Med 12:217–224

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ramírez G, Zavala M, Pérez J, Zamilpa A (2012) In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. J Evid Based Complementary Altern Med 2012:1–6

    Article  Google Scholar 

  33. Kiage-Mokua BN, Roos N, Schrezenmeir J (2012) Lapacho tea (Tabebuia impetiginosa) extract inhibits pancreatic lipase and delays postprandial triglyceride increase in rats. Phytother Res 26:1878–1883

    Article  PubMed  Google Scholar 

  34. Ramírez-Vélez R (2011) La lipemia pos-prandial induce disfunción endotelial y mayor grado de resistencia a la insulina en sujetos sanos. Endocr Nutr 58:74–79

    Google Scholar 

  35. Chidrawar VR, Patel KN, Bothta SB, Shiromwar SS, Koli AR, Kalyankar GG (2012) Anti-obesity effect of Stellaria media methanolic extract in the murine model of cafeteria diet induced obesity. Int J Nutr Pharmacol Neurol Dis 2:121–131

    Article  CAS  Google Scholar 

  36. Pinto-Junior DAC, Seraphim PM (2012) Cafeteria diet intake for fourteen weeks can cause obesity and insulin resistance in Wistar rats. Rev Nutr 25:313–319

    Article  CAS  Google Scholar 

  37. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity 19:1109–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kumar S, Alagawadi KR, Rao MR (2011) Effect of Argyreia speciosa root extract on cafeteria diet-induced obesity in rats. Indian J Pharmacol 43:163–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Al-Awwadi NAJ, Alyassin FF (2011) Resveratrol reduce metabolic disorders in obese rats. J Pharm Biomed Sci 1:167–173

    Google Scholar 

  40. Patil A, Thakurdesai PA, Pawar S, Soni K (2012) Evaluation of ethanolic leaf extract of Ceiba pentandra for anti-obesity and hypolipidaemic activity in cafeteria diet (CD) treated Wistar albino rats. Int J Pharma Sci Res 3:2664–2668

    Google Scholar 

  41. Waterlow JC (2006) Protein turnover. CABI, Wallingford

    Book  Google Scholar 

  42. Panchal SK, Poudyal H, Iyer A, Nazer R, Alan A, Diwan V, Kauter K, Conrad S, Campbell F, Ward L, Gode G, Fenning A, Brown L (2012) High-carbohydrate high-fat-diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57:51–64

    Google Scholar 

  43. Mathieu P, Poirier P, Pibarot P, Lemieuse I, Després JP (2009) Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 53:577–584

    Article  CAS  PubMed  Google Scholar 

  44. Madeira FB, Silva AA, Veloso HF, Goldani MZ, Kac G, Cardoso VC, Bettiol H, Barbier MA (2013) Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS One 8:1–9

    Google Scholar 

  45. Speaker KJ, Fleshner M (2012) Interleukin-1 beta: a potential link between stress and the development of visceral obesity. BMC Physiol 12:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Amacher DE, Schomaker S, Burkhardt JE (1998) The relationship among microsomal enzyme induction, liver weight and histological change in rat toxicology studies. Food Chem Toxicol 36:9–10

    Article  Google Scholar 

  47. Roe JCF (ed) (1970) Metabolic aspects of food safety. Academic, New York

    Google Scholar 

  48. Robert MR, Katsuhiko Y, Abraham N, Takanori H, Gordon F (2010) Hepatic enzyme induction: histopathology. Toxicol Pathol 38:776–795

    Article  Google Scholar 

  49. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Park HJ, DiNatale DA, Chung MY, Park YK, Lee JY, Koo SI, O’Connor M, Manautou JE, Bruno RS (2011) Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J Nutr Biochem 22:393–400

    Article  CAS  PubMed  Google Scholar 

  51. Park HJ, Jung UJ, Lee MK, Cho SJ, Jung HK, Hong JH, Park YB, Kim SR, Shim S, Jung J, Choi MS (2012) Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Mol Nutr Food Res 00:1–5

    Google Scholar 

  52. Pak W, Takayama F, Hasegawa A, Mankura M, Egashira T, Ueki K, Nakamoto K, Kawasaki H, Mori A (2012) Water extract of Vitis coignetiae Pulliat leaves attenuates oxidative stress and inflammation in progressive NASH rats. Acta Med Okayama 66:317–327

    PubMed  Google Scholar 

  53. Takayama F, Nakamoto K, Kawasaki H, Mankura M, Egashira T, Ueki K, Hasegawa A, Okada S, Mori A (2009) Beneficial effects of Vitis coignetiae Pulliat leaves on nonalcoholic steatohepatitis in a rat model. Acta Med Okayama 63:105–111

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) for financial support of this research. ESL is a member of the INCT de Processos Redox em Biomedicina-Redoxoma (MCT/CNPq). APAB received a grant from DCR/CNPq/FAPEAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson S. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, L.S., Lima, A.S., Boleti, A.P.A. et al. Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. J Nat Med 68, 316–325 (2014). https://doi.org/10.1007/s11418-013-0800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-013-0800-1

Keywords

Navigation