Skip to main content

Neurobehavioral and genotoxic evaluation of (−)-linalool in mice

Abstract

(−)-Linalool is a monoterpene compound commonly found as a major component of the essential oil of several aromatic species. It has been shown to exert several actions in the central nervous system (CNS) and is able to inhibit glutamate receptors. This study investigated the effect of (−)-linalool in depression and genotoxicity models. Mice were given (−)-linalool (10, 50, 100 or 200 mg/kg i.p.) and were evaluated using the tail suspension test (TST). Genotoxic and antigenotoxic effects in blood and brain were investigated using the alkaline comet assay. In the TST, the animals that received doses of 100 and 200 mg/kg presented a decrease in immobility times. No increase in DNA damage was observed in either tissue, and resistance to DNA oxidative damage induced by hydrogen peroxide did not increase. (−)-Linalool showed an antidepressant-like activity in the TST and was unable to cause damage/protection to DNA in brain tissue and peripheral blood. This investigation provides evidence of an important effect of (−)-linalool on the CNS; however, more studies are necessary to support its possible clinical uses.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Elisabetsky E, Brum LF, Souza DO (1999) Anticonvulsant properties of linalool on glutamate related seizure model. Phytomedicine 6:113–119

    Article  Google Scholar 

  2. 2.

    Elisabetsky E, Coelho-De-Souza GP, Santos MAC, Siqueira IR, Amador TA (1995) Sedative properties of linalool. Fitoterapia 66:407–414

    CAS  Google Scholar 

  3. 3.

    Sugawara Y, Hara C, Tamura K, Fujii T, Nakamura K, Masujima T, Aoki T (1998) Sedative effect on humans of inhalation of essential oil of linalool: sensory evaluation and physiological measurements using optically active linalools. Anal Chim Acta 365:293–299

    Article  CAS  Google Scholar 

  4. 4.

    Linck VM, Silva AL, Figueiro M, Piato AL, Hermmann AP, Elisabetsky E (2009) Inhaled linalool-induced sedation in mice. Phytomedicine 16:303–307

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Guzmán-Gutiérrez SL, Gómez-Cansino R, García-Zebadúa JC, Jiménez-Pérez NC, Reyes-Chilpa R (2012) Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles. J Ethnopharmacol 143:673–679

    PubMed  Article  Google Scholar 

  6. 6.

    Peana AT, Marzocco S, Popolo A, Pinto A (2006) (−)-Linalool inhibits in vitro NO formation: probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci 78:719–723

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Batista PA, Werner MF, Oliveira EC, Burgos L, Pereira P, Brum LF, Santos ARS (2008) Evidence for the involvement of ionotropic glutamatergic receptors on the antinociceptive effect (−)-linalool in mice. Neurosci Lett 440:299–303

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Batista PA, Werner MF, Oliveira EC, Burgos L, Pereira P, Brum LF, Story GM, Santos ARS (2010) The antinociceptive effect of (−)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J Pain 11:1222–1229

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Brum LF, Elisabetsky E, Souza DO (2001) Effects of linalool on [3H] MK801 and [3H] muscimol binding in mouse cortical membranes. Phytother Res 15:422–425

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003:250–272

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Li YF, Zhang YZ, Liu YQ, Wang HL, Cao JB, Guan TT, Luo ZP (2006) Inhibition of N-methyl-d-aspartate receptor function appears to be one of the common actions for antidepressants. J Psychopharmacol 20:629–635

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Carobrez AP (2003) Glutamatergic neurotransmission as molecular target in anxiety. Rev Bras Psiquiatr 25:52–58

    Article  Google Scholar 

  13. 13.

    Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18:45–51

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Pereira P, Gianesini J, da Silva Barbosa C, Cassol GF, Von-Borowski RG, Kahl VF, Cappelari SE, Picada JN (2009) Neurobehavioral and genotoxic parameters of duloxetine in mice using the inhibitory avoidance task and comet assay as experimental models. Pharmacol Res 59:57–61

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Machado DG, Bettio LEB, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, Rodrigues ALS (2009) Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 33:642–650

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi Y (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kaefer V, Semedo JG, Silva Kahl VF, Von-Borowsky RG, Gianesini J, Kist TBL, Pereira P, Picada JN (2010) DNA damage in brain cells and behavioral deficits in mice after treatment with high doses of amantadine. J Appl Toxicol 30:745–753

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Sampaio LF, Maia JG, de Parijós AM, de Souza RZ, Barata LE (2012) Linalool from Rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity. Phytother Res 26:73–77

    Article  CAS  Google Scholar 

  21. 21.

    Marek GJ (2012) Activation of adenosine1 receptors induces antidepressant-like, anti-impulsive effects on differential reinforcement of low-rate 72-s behavior in rats. J Pharmacol Exp Ther 341:564–570

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Peana AT, Rubattu P, Piga GG, Fumagalli S, Boatto G, Pippia P, De Montis MG (2006) Involvement of adenosine A1 and A2A receptors in (−)-linalool-induced antinociception. Life Sci 78:2471–2474

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Costa CA, Bidinotto LT, Takahira RK, Salvadori DM, Barbisan LF, Costa M (2011) Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil. Food Chem Toxicol 49:2268–2272

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Beric′ T, Nikolic′ B, Stanojevic′ J, Vukovic′-Gacic′ B, Knezevic′-Vukcevic′ J (2008) Protective effect of basil (Ocimum basilicum L.) against oxidativeDNA damage and mutagenesis. Food Chem Toxicol 46:724–732

    Google Scholar 

  25. 25.

    Mitic′-C′ulafic D, Zegura B, Nikolic′ B, Vukovic′-Gacic′ B, Knezevic′-Vukcevic′ J, Filipic M (2009) Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food Chem Toxicol 47:260–266

    Google Scholar 

  26. 26.

    Roffey SJ, Walker R, Gibson GG (1990) Hepatic peroxisomal and microsomal enzyme induction by citral and linalool in rats. Food Chem Toxicol 28:403–408

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Sekihashi K, Yamamoto A, Matsumura Y, Ueno S, Watanabe-Akanuma M, Kassie F, Knasmuller S, Tsuda S, Sasaki YF (2002) Comparative investigation of multiple organs of mice and rats in the comet assay. Mutat Res 517:53–75

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), Brazil.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrícia Pereira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coelho, V., Mazzardo-Martins, L., Martins, D.F. et al. Neurobehavioral and genotoxic evaluation of (−)-linalool in mice. J Nat Med 67, 876–880 (2013). https://doi.org/10.1007/s11418-013-0751-6

Download citation

Keywords

  • Comet assay
  • Depression
  • Genotoxicity
  • (−)-Linalool
  • Tail suspension test