Skip to main content
Log in

Calycosin and formononetin from astragalus root enhance dimethylarginine dimethylaminohydrolase 2 and nitric oxide synthase expressions in Madin Darby Canine Kidney II cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a crucial vasodilator produced by nitric oxide synthase (NOS). Asymmetric dimethylarginine (ADMA) is an endogenous NOS inhibitor and mainly catabolized by dimethylarginine dimethylaminohydrolase (DDAH). As we reported, the antihypertensive effect of shichimotsukokato (SKT), a formula of Japanese traditional kampo medicine consisting of 7 crude drugs, in 5/6 nephrectomized rats, is mediated by the DDAH-ADMA-NO pathway. Our present study aimed to explore the effective compounds of SKT using Madin Darby Canine Kidney (MDCK) II cells. We isolated two isoflavones, calycosin and formononetin from astragalus root, one of the components of SKT, which can promote DDAH2 protein and mRNA expressions in MDCK II cells. The neuronal NOS levels were also upregulated by the treatment of calycosin and formononetin. These results suggest that calycosin and formononetin could be the active ingredients of astragalus root and SKT that cause antihypertensive effects. The increased levels of DDAH2 and NOS may enhance NO production, decrease ADMA level and improve endothelial and cardiovascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ueda S, Kato S, Matsuoka H, Kimoto M, Okuda S, Morimatsu M, Imaizumi T (2003) Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase. Circ Res 92:226–233

    Article  PubMed  CAS  Google Scholar 

  2. Dabire H, Barthelemy I, Blanchard-Gutton N, Sambin L, Sampedrano CC, Gouni V, Unterfinger Y, Aguilar P, Thibaud JL, Ghaleh B, Bize A, Pouchelon JL, Blot S, Berdeaux A, Hittinger L, Chetboul V, Su JB (2012) Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS. Basic Res Cardiol 107:240

    Article  PubMed  Google Scholar 

  3. Valkonen VP, Tuomainen TP, Laaksonen R (2005) DDAH gene and cardiovascular risk. Vasc Med 10(Suppl 1):S45–S48

    Article  PubMed  Google Scholar 

  4. Zoccali C, Bode-Boger S, Mallamaci F, Benedetto F, Tripepi G, Malatino L, Cataliotti A, Bellanuova I, Fermo I, Frolich J, Boger R (2001) Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358:2113–2117

    Article  PubMed  CAS  Google Scholar 

  5. Ayling LJ, Whitley GS, Aplin JD, Cartwright JE (2006) Dimethylarginine dimethylaminohydrolase (DDAH) regulates trophoblast invasion and motility through effects on nitric oxide. Hum Reprod 21:2530–2537

    Article  PubMed  CAS  Google Scholar 

  6. MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley GS, Vallance P (1996) Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 119:1533–1540

    Article  PubMed  CAS  Google Scholar 

  7. Bai F, Makino T, Ono T, Mizukami H (2012) Anti-hypertensive effects of shichimotsukokato in 5/6 nephrectomized Wistar rats mediated by the DDAH-ADMA-NO pathway. J Nat Med 66:583–590

    Article  PubMed  Google Scholar 

  8. Sonmez A, Celebi G, Erdem G, Tapan S, Genc H, Tasci I, Ercin CN, Dogru T, Kilic S, Uckaya G, Yilmaz MI, Erbil MK, Kutlu M (2010) Plasma apelin and ADMA Levels in patients with essential hypertension. Clin Exp Hypertens 32:179–183

    Article  PubMed  CAS  Google Scholar 

  9. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  PubMed  CAS  Google Scholar 

  10. Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104:2569–2575

    Article  PubMed  CAS  Google Scholar 

  11. Kitagawa I, Wang H, Saito M, Takagi A, Yoshikawa M (1983) Saponin and Sapogenol. XXXV. Chemical constituents of Astragali Radix, the root of Astragalus membranaceus BUNGE. (2). Astragalosides I, II and IV, Acetylastragaloside I and Isoastragalosides I and II. Chem Pharm Bull 31:698–708

    Article  CAS  Google Scholar 

  12. Cui B, Nakamura M, Kinjo J, Nohara T (1993) Chemical constituents of Astragali semen. Chem Pharm Bull 41:178–182

    Article  CAS  Google Scholar 

  13. Kinjo J, Kurusawa J, Baba J, Takeshita T, Yamasaki M, Nohara T (1987) Studies on the constituents of Pueraria lobata. III. Isoflavonoids and related compounds in the roots and the voluble stems. Chem Pharm Bull 35:4846–4850

    Article  CAS  Google Scholar 

  14. Zhao YN, Li JZ, Yu L (2002) Effect of astragalus-angelica mixture on osteopontin expression in rats with chronic nephrosclerosis. Zhongguo Zhong Xi Yi Jie He Za Zhi 22:613–617

    PubMed  Google Scholar 

  15. Li G, Wang J, Li X, Li N (2003) Isolation and identification of pterocarpans and isoflavones from the pericarp of Sphaerophysa salsula DC. Zhongguo Yaowu Huaxue Zazhi 13:215–218

    CAS  Google Scholar 

  16. Liu W, Chen J, Zuo W, Li X, Wang J (2007) A new isoflavane from processed Astragalus membranaceus. Chin Chem Lett 18:1092–1094

    Article  CAS  Google Scholar 

  17. Law CS, Leung PY, Ng PK, Kou CY, Au KK, Zhou J, Tsui SK (2011) The involvement of NG, NG-dimethylarginine dimethylhydrolase 1 in the proliferative effect of Astragali radix on cardiac cells. J Ethnopharmacol 134:130–135

    Article  PubMed  CAS  Google Scholar 

  18. Achan V, Tran CT, Arrigoni F, Whitley GS, Leiper JM, Vallance P (2002) All-trans-retinoic acid increases nitric oxide synthesis by endothelial cells: a role for the induction of dimethylarginine dimethylaminohydrolase. Circ Res 90:764–769

    Article  PubMed  CAS  Google Scholar 

  19. Holden DP, Cartwright JE, Nussey SS, Whitley GS (2003) Estrogen stimulates dimethylarginine dimethylaminohydrolase activity and the metabolism of asymmetric dimethylarginine. Circulation 108:1575–1580

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Wilson A, Gao X, Kuruba R, Liu Y, Poloyac S, Pitt B, Xie W, Li S (2009) Coordinated regulation of dimethylarginine dimethylaminohydrolase-1 and cationic amino acid transporter-1 by farnesoid X receptor in mouse liver and kidney and its implication in the control of blood levels of asymmetric dimethylarginine. J Pharmacol Exp Ther 331:234–243

    Article  PubMed  CAS  Google Scholar 

  21. Wakino S, Hayashi K, Tatematsu S, Hasegawa K, Takamatsu I, Kanda T, Homma K, Yoshioka K, Sugano N, Saruta T (2005) Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats. Hypertens Res 28:255–262

    Article  PubMed  CAS  Google Scholar 

  22. Verma SP, Goldin BR (1998) Effect of soy-derived isoflavonoids on the induced growth of MCF-7 cells by estrogenic environmental chemicals. Nutr Cancer 30:232–239

    Article  PubMed  CAS  Google Scholar 

  23. Fan Y, Wu DZ, Gong YQ, Zhou JY, Hu ZB (2003) Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells. Eur J Pharmacol 481:33–40

    Article  PubMed  CAS  Google Scholar 

  24. Kim JH, Kim MR, Lee ES, Lee CH (2009) Inhibitory effects of calycosin isolated from the root of Astragalus membranaceus on melanin biosynthesis. Biol Pharm Bull 32:264–268

    Article  PubMed  CAS  Google Scholar 

  25. Wojciak-Stothard B, Torondel B, Zhao L, Renne T, Leiper JM (2009) Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell 20:33–42

    Article  PubMed  CAS  Google Scholar 

  26. Rathel TR, Leikert JF, Vollmar AM, Dirsch VM (2005) The soy isoflavone genistein induces a late but sustained activation of the endothelial nitric oxide-synthase system in vitro. Br J Pharmacol 144:394–399

    Article  PubMed  Google Scholar 

  27. Sun T, Liu R, Cao YX (2011) Vasorelaxant and antihypertensive effects of formononetin through endothelium-dependent and -independent mechanisms. Acta Pharmacol Sin 32:1009–1018

    Article  PubMed  CAS  Google Scholar 

  28. Wu JH, Li Q, Wu MY, Guo DJ, Chen HL, Chen SL, Seto SW, Au AL, Poon CC, Leung GP, Lee SM, Kwan YW, Chan SW (2010) Formononetin, an isoflavone, relaxes rat isolated aorta through endothelium-dependent and endothelium-independent pathways. J Nutr Biochem 21:613–620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants-in-Aid for Scientific Research (KAKENHI) C, #21590172 (2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Makino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, F., Makino, T., Kono, K. et al. Calycosin and formononetin from astragalus root enhance dimethylarginine dimethylaminohydrolase 2 and nitric oxide synthase expressions in Madin Darby Canine Kidney II cells. J Nat Med 67, 782–789 (2013). https://doi.org/10.1007/s11418-013-0749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-013-0749-0

Keywords

Navigation