Skip to main content
Log in

Antinociceptive and anti-inflammatory effects of the monoterpene α,β-epoxy-carvone in mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

α,β-Epoxy-carvone (EC) is a monoterpene found in the essential oils of many species of plants. It can also be obtained by organic synthesis. EC exerts a depressant effect on the central nervous system and is also known to have anticonvulsant, antimicrobial and antioxidant effects. The present study investigated the antinociceptive and anti-inflammatory effects of EC. Intraperitoneal administration of EC at doses of 100, 200 or 300 mg/kg promoted a significant antinociceptive effect, as shown in the acetic acid-induced abdominal writhing test. EC also provoked a reduction in formalin-induced nociception in the first (300 mg/kg) and second phases (200 and 300 mg/kg). In the hot-plate test, an increase in response latency was found at 30 min (at 100, 200 and 300 mg/kg), and at 60 and 120 min (at 300 mg/kg) following administration of EC, an effect that was reversed by naloxone. Intraperitoneal administration of EC (300 mg/kg) inhibited the increased vascular permeability provoked by acetic acid. These findings suggest that EC inhibited the acute inflammatory reaction, with a pronounced peripheral and central antinociceptive effect in mice that is probably associated with activation of the opioidergic system, which appears to play a role in the antinociceptive activity induced by EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raouf R, Quick K, Wood JN (2010) Pain as a channelopathy. J Clin Invest 120:3745–3752

    Article  PubMed  CAS  Google Scholar 

  2. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  PubMed  CAS  Google Scholar 

  3. Velázquez KT, Mohammad H, Sweitzer SM (2007) Protein kinase C in pain: involvement of multiple isoforms. Pharmacol Res 55:578–589

    Article  PubMed  Google Scholar 

  4. Almeida RN, Navarro DS, Barbosa-filho JM (2001) Plants with central analgesic activity. Phytomedicine 8:310–322

    Article  PubMed  CAS  Google Scholar 

  5. Kumara SS, Huat BT (2001) Extraction, isolation and characterisation of antitumor principle, alpha-hederin, from the seeds of Nigella sativa. Planta Med 7:29–32

    Article  Google Scholar 

  6. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–475

    Article  PubMed  CAS  Google Scholar 

  7. Iacobellis NS, Lo Cantore P, Capasso F, Senatore F (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53:57–61

    Article  PubMed  CAS  Google Scholar 

  8. Jirovetz L, Buchbauer G, Shafi PM, Abraham GT (2001) Analysis of the essential oil of the roots of the medicinal plant Kaempferia galanga L. (Zingiberaceae) from South India. Acta Pharm Turc 43:107–110

    CAS  Google Scholar 

  9. Koster R, Anderson M, Debeer EJ (1959) Acetic acid for analgesic screening. J Fed Proc 18:412–417

    Google Scholar 

  10. Vinegar R, Truaux JF, Selph JL (1976) Quantitative studies of pathways to acute carrageenan inflammation. J Fed Proc 35:2447–2456

    CAS  Google Scholar 

  11. De Sousa DP, Oliveira FS, Almeida RN (2006) Evaluation of the central activity of hydroxydihydrocarvone. Biol Pharm Bull 29:811–812

    Article  PubMed  Google Scholar 

  12. De Sousa DP, Schefer RR, Brocksom U, Brocksom TJ (2006) Synthesis and antidepressant evaluation of three para-benzoquinone mono-oximes and their oxy derivatives. Molecules 11:148–155

    Article  PubMed  Google Scholar 

  13. Gonçalves JCR, Oliveira FS, Benedito RB, De Sousa DP, Almeida RN, Araújo DAM (2008) Antinociceptive activity of (−)-carvone: evidence of association with decreased peripheral nerve excitability. Biol Pharm Bull 31:1017–1020

    Article  PubMed  Google Scholar 

  14. Arruda TA, Antunes RMP, Catão RMR, Lima EO, De Sousa DP, Nunes XP, Pereira MSV, Barbosa-Filho JM, Da Cunha EVL (2006) Preliminary study of the antimicrobial activity of Mentha × villosa Hudson essential oil, rotundifolone ant its analogues. Rev Bras Farmacogn 16:307–311

    Article  CAS  Google Scholar 

  15. De Sousa DP, Nóbrega FFF, Claudino FS, Almeida RN, Leite JR, Mattei R (2007) Pharmacological effects of the monoterpene α, β-epoxy-carvone in mice. Rev Bras Farmacogn 17:170–175

    Article  Google Scholar 

  16. Almeida RN, De Sousa DP, Nóbrega FFF, Claudino FS, Araújo DAM, Leite JR, Mattei R (2008) Anticonvulsant effect of a natural compound α, β-epoxy-carvone and its action on the nerve excitability. Neurosci Lett 443:51–55

    Article  PubMed  Google Scholar 

  17. Galeotti N, Di CesareMannelli L, Mazzanti G, Bartolini A, Ghelardini C (2002) Menthol: a natural analgesic compound. Neurosci Lett 322:145–148

    Article  PubMed  CAS  Google Scholar 

  18. Abdollahi M, Karimpour H, Monsef-Esfehani HR (2003) Antinociceptive effects of Teucrium polium L. total extract and essential oil in mouse writhing test. Pharmacol Res 48:31–35

    Article  PubMed  CAS  Google Scholar 

  19. Peana AT, D’Aquila PS, Chessa ML, Moretti MDL, Serra G, Pippia P (2003) (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol 460:37–41

    Article  PubMed  CAS  Google Scholar 

  20. Goncales CE, Araldi D, Panatieri RB, Rocha JBT, Zeni G, Nogueira CW (2005) Antinociceptive properties of acetylenic thiophene and furan derivatives: evidence for the mechanism of action. Life Sci 76:2221–2234

    Article  PubMed  CAS  Google Scholar 

  21. Guginski G, Luis AP, Silva MD, Massaro M, Martins DF, Chaves J, Mattos RW, Silveira D, Ferreira VMM, Calixto JB, Santos ARS (2009) Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol Biochem Behav 93:10–16

    Article  PubMed  CAS  Google Scholar 

  22. Brito RG, Guimarães AG, Quintans JSS, Santos MRV, De Souza DP, Badaue-Passos D Jr, de Lucca W Jr, Brito FA, Barreto EO, Oliveira AP, Quintans LJ Jr (2012) Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents. J Nat Med 66:637–644

    Article  PubMed  CAS  Google Scholar 

  23. Klein E, Ohloff G (1963) Der stereochemische verlauf der alkalischen epoxydation von α, β-ungesattigten carbonylverbindungen der cyclischen monoterpenreihe. Tetrahedron 19:1091–1099

    Article  CAS  Google Scholar 

  24. Koster R, Anderson M, Debeer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:418–420

    Google Scholar 

  25. Collier HOJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32:295–310

    Article  PubMed  CAS  Google Scholar 

  26. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    Article  PubMed  CAS  Google Scholar 

  27. Eddy NB, Leimbach D (1953) Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutilamines. J Pharmacol Exp Ther 107:385–393

    PubMed  CAS  Google Scholar 

  28. Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MCA, Santos ARS (2006) Antinociceptive properties of the ethanolic extract and of the triterpene 3β,6β,16β-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pharmacol Biochem Behav 83:90–99

    Article  PubMed  CAS  Google Scholar 

  29. Silva MG, Oliveira FS, Quintans-Junior LJ, Oliveira TML, Diniz MFFM (2005) Investigação do efeito analgésico central e antiinflamatório de Conocliniopsis prasiifolia (DC) R.M. King & H. Robinson em Roedores. Acta Farm Bonaerense 24:533–537

    Google Scholar 

  30. Li Zhang HuJJ, Lin JW, Fang WS, Du GH (2009) Anti-inflammatory and analgesic effects ethanol and aqueous extracts of Pterocephalus hookeri (C. B. Clarke) Hoeck. J Ethnopharmacol 123:510–514

    Article  PubMed  Google Scholar 

  31. Fukawa K, Kawano O, Hibi M, Misaki N, Ohba S, Hatanaka Y (1980) A method for evaluating analgesic agents in rats. J Pharmacol Methods 4:251–259

    Article  PubMed  CAS  Google Scholar 

  32. Trongsakul S, Panthong A, Kanjanapothi D, Taesotikul T (2003) The analgesic, antipyretic and anti-inflammatory activity of Diospyros variegate Kruz. J Ethnopharmacol 85:221–225

    Article  PubMed  CAS  Google Scholar 

  33. Wheeler-Aceto H, Cowan A (1991) Neurogenic and tissue-mediated components of formalin-induced oedema: evidence for supraspinal regulation. Agents Actions 34:264–269

    Article  PubMed  CAS  Google Scholar 

  34. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    Article  PubMed  CAS  Google Scholar 

  35. Heapy CG, Jamieson A, Russel NJW (1987) Afferent C-fibres and A delta activity in models of inflammation. Br J Pharmacol 90:164–170

    Google Scholar 

  36. Murray CW, Porreca F, Cowan A (1988) Methodological refinements to the mouse paw formalin test. An animal model of tonic pain. J Pharmacol Methods 20:175–186

    Article  PubMed  CAS  Google Scholar 

  37. Rujjanawate C, Kanjanapothi D, Panthong A (2003) Pharmacological effect and toxicity of alkaloids from Gelsemium elegans Benth. J Ethnopharmacol 89:91–95

    Article  PubMed  CAS  Google Scholar 

  38. Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352

    Article  PubMed  CAS  Google Scholar 

  39. França DS, Souza ALS, Almeida KR, Dolabella SS, Martinelli C, Coelho MM (2001) B vitamins induce an antinociceptive effect in the acetic acid and formaldehyde models of nociception in mice. Eur J Pharmacol 421:157–164

    Article  PubMed  Google Scholar 

  40. Oliveira FS, De Sousa DP, Almeida RN (2008) Antinociceptive effect of hydroxydihydrocarvone. Biol Pharm Bull 31:588–591

    Article  CAS  Google Scholar 

  41. Guilhon CC, Raymundo LJRP, Alviano DS, Blank AF, Arrigoni-Blank MF, Matheus ME, Cavalcanti SCH, Alviano CS, Fernandes PD (2011) Characterisation of the anti- inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J Ethnopharmacol 135:406–413

    Article  PubMed  CAS  Google Scholar 

  42. Yaksh TL, Rudy TA (1976) Analgesia mediated by a direct spinal action of narcotics. Science 192:1357–1358

    Article  PubMed  CAS  Google Scholar 

  43. Asongalem EA, Foyet HS, Ekobo S, Dimo T, Kamtchouing P (2004) Antiinflammatory, lack of central analgesia and antipyretic properties of Acanthus montanus (Ness) T. Anderson. J Ethnopharmacol 95:63–68

    Article  PubMed  CAS  Google Scholar 

  44. Rao VS, Menezes AM, Viana GS (1990) Effect of myrcene on nociception in mice. J Pharma Pharmacol 42:877–878

    Article  CAS  Google Scholar 

  45. Santos FA, Rao VSN (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 14:240–244

    Article  PubMed  CAS  Google Scholar 

  46. Amaral JF, Silva MIG, Neto MRA, Neto PFT, Moura BA, Melo CTV, Araújo FLO, De Sousa DP, Vasconcelos PF, Vasconcelos SMM, Sousa FCF (2007) Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol Pharm Bull 30:1217–1220

    Article  PubMed  Google Scholar 

  47. Longhi-Balbinot DT, Pietrovski EF, Gadotti VM, Martins DF, Facundo VA, Santos ARS (2009) Spinal antinociception evoked by the triterpene 3β,6β,16β-trihydroxylup-20(29)-ene in mice: evidence for the involvement of the glutamatergic system via NMDA and metabotropic glutamate receptors. Eur J Pharmacol 623:30–36

    Article  PubMed  CAS  Google Scholar 

  48. Choi JH, Jung BH, Kang OH, Choi HJ, Park PS, Cho SH, Kim YC, Sohn DH, Park H, Lee JH, Kwon DY (2006) The anti-inflammatory and anti-nociceptive effects of ethyl acetate fraction of Cynanchi paniculati radix. Biol Pharm Bull 29:971–975

    Article  PubMed  CAS  Google Scholar 

  49. Hajhashemi V, Ghannadi A, Pezeshkian SK (2002) Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. J Ethnopharmacol 82:83–87

    Article  PubMed  Google Scholar 

  50. Peana AT, De Montis MG, Sechi S, Sircana G, D’aquila PS, Pippia P (2004) Effects of (−)-linalool in the acute hyperalgesia induced by carrageenan, l-glutamate and prostaglandin E2. Eur J Pharmacol 497:279–284

    Article  PubMed  CAS  Google Scholar 

  51. Lino CS, Gomes PB, Lucetti DL, Diógenes JPL, Sousa FCF, Silva MGV (2005) Evaluation of antinociceptive and antiinflammatory activities of the essential oil (EO) of Ocimum micranthum Willd. from northeastern Brazil. Phytother Res 19:708–712

    Article  PubMed  CAS  Google Scholar 

  52. Takaki I, Bersani-Amado LE, Vendruscolo A, Sartoretto SM, Diniz SP, Bersani-Amado CA, Cuman RKN (2008) Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J Med Food 11:741–746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marilene L. da Rocha or Demetrius A. M. Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Rocha, M.L., Oliveira, L.E.G., Patrício Santos, C.C.M. et al. Antinociceptive and anti-inflammatory effects of the monoterpene α,β-epoxy-carvone in mice. J Nat Med 67, 743–749 (2013). https://doi.org/10.1007/s11418-012-0738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0738-8

Keywords

Navigation