Journal of Natural Medicines

, Volume 67, Issue 3, pp 562–570 | Cite as

Discrimination of the Thai rejuvenating herbs Pueraria candollei (White Kwao Khruea), Butea superba (Red Kwao Khruea), and Mucuna collettii (Black Kwao Khruea) using PCR-RFLP

  • Suchaya Wiriyakarun
  • Woraluk Yodpetch
  • Katsuko Komatsu
  • Shu Zhu
  • Nijsiri Ruangrungsi
  • Suchada Sukrong
Original Paper

Abstract

The tuberous roots of Pueraria candollei (White Kwao Khruea), Butea superba (Red Kwao Khruea) and Mucuna collettii (Black Kwao Khruea), which belong to the family Leguminosae, are used as rejuvenating herbs in traditional Thai medicine. Although all of these species have an indication for rejuvenation, each differs in its medicinal properties. Two varieties of P. candollei, var. mirifica and var. candollei, affect females, whereas B. superba and M. collettii exhibit effects on males. However, the identification of these roots according to the name “Kwao Khruea” is confusing due to the similarity in their features. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was utilised to identify plant origin. The partial matK gene was amplified and subjected to restriction enzyme digestion with DdeI and TaqI. The restriction fragments generated differed in number and size. To test the reliability of the method, an admixture of the different Kwao Khruea species containing equal amounts of DNA was tested. The results showed combined restriction patterns, and each species could be detected in the background of the others. The method was also used to authenticate eight different crude drugs sold as various types of Kwao Khruea in Thai markets. The results showed that the misidentification of commercial drugs remains a problem in crude drug markets. The PCR-RFLP analysis developed here provides a simple and accurate discrimination of these rejuvenating “Kwao Khruea” species.

Keywords

Pueraria candollei Butea superba Mucuna collettii Leguminosae PCR-RFLP DNA admixture 

Notes

Acknowledgements

This research was supported financially by Strategic Scholarships Fellowships Frontier Research Networks under Office of the Higher Education, Thailand. We are grateful to the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (HR1166I-55) and Chulalongkorn University Centenary Academic Development Project. We also thank Dr. Charan Ditchaiwong for kindly supplying authentic plants materials for this work. S.W. was a recipient of Strategic Scholarships Fellowships Frontier Research Networks.

References

  1. 1.
    Suntara A (1931) The remedy pamphlet of Kwao Krua tuber of Luang Anusarnsuntarakromkranpiset. Upatipongsa, ChiangMai, pp 1–174Google Scholar
  2. 2.
    Niyomdham C (1992) Note on Thai and Indo-Chinese Phaseoleae (Leguminosae–Papilionoideae). Nord J Bot 12:339–346CrossRefGoogle Scholar
  3. 3.
    Chukeatirote E, Saisavoey T (2009) Antimicrobial property and antioxidant composition of crude extracts of Pueraria mirifica, Butea superba and Mucuna macrocarpa. Maejo Int J Sci Technol 3:212–221Google Scholar
  4. 4.
    Cain JC (1960) Miroestrol: an estrogen from the plant Pueraria mirifica. Nature 3:774–777CrossRefGoogle Scholar
  5. 5.
    Cherdshewasart W, Cheewasopit W, Picha P (2004) The differential anti-proliferation effect of white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells. J Ethnopharmacol 93:255–260PubMedCrossRefGoogle Scholar
  6. 6.
    Yusakul G, Putalun W, Udomsin O, Juengwatanatrakul Y, Chaichantipyuth C (2011) Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia 82:203–207PubMedCrossRefGoogle Scholar
  7. 7.
    Roengsamran S, Petsom A, Ngamrojanavanich N, Rugsilp N, Sittiwichieanwong P, Korphueng P, Cherdshewasart W, Chaichantipyuth C (2000) Flavonoid and flavonoid glycoside from Butea superba Roxb. and their cAMP phosphodiesterase inhibitory activity. J Sci Res Chula Univ 25:169–176Google Scholar
  8. 8.
    Kerr A (1932) A reputed rejuvenator. J Siam Soc (Nat History Suppl.) 8:336–338Google Scholar
  9. 9.
    Shaw PC, Ngan FN, But PPH, Wang J (1997) Authentication of Chinese medicinal materials by DNA technology. J Food Drug Anal 5:273–284Google Scholar
  10. 10.
    Kaplan J, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159–165Google Scholar
  11. 11.
    Feng T, Liu S, He XJ (2010) Molecular authentication of the traditional Chinese medicinal plant Angelica sinensis based on internal transcribed spacer of nrDNA. J Biotechnol 13:1–10Google Scholar
  12. 12.
    Wang CZ, Li P, Ding JY, Jin GQ, Yuan CS (2005) Identification of Fritillaria pallidiflora using diagnostic PCR and PCR-RFLP based on nuclear ribosomal DNA internal transcribed spacer sequences. Planta Med 71:384–386PubMedCrossRefGoogle Scholar
  13. 13.
    Li X, Ding X, Chu B, Ding G, Gu S, Qian L, Wang Y, Zhou Q (2007) Molecular authentication of Alisma orientale by PCR-RFLP and ARMS. Planta Med 73:67–70PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao YP, Qiu YX, Gong W, Li JH, Fu CX (2007) Authentication of Actinidia macrosperma using PCR-RFLP based on trnK sequences. Bot Stud 48:239–242Google Scholar
  15. 15.
    Vongsak B, Kengtong S, Vajrodaya S, Sukrong S (2008) Sequencing analysis of the medicinal plant Stemona tuberosa and five related species existing in Thailand based on trnH-psbA chloroplast DNA. Planta Med 74:1764–1766PubMedCrossRefGoogle Scholar
  16. 16.
    Fan LL, Zhu S, Chen HB, Yang DH, Cai SQ, Komatsu K (2009) Identification of the botanical source of Stemonae Radix based on PCR with specific primers and PCR-RFLP. Biol Pharm Bull 32:1624–1627PubMedCrossRefGoogle Scholar
  17. 17.
    Diao Y, Lin XM, Liao CL, Tang CZ, Chen ZJ, Hu ZL (2009) Authentication of Panax ginseng from its adulterants by PCR-RFLP and ARMS. Planta Med 75:557–560PubMedCrossRefGoogle Scholar
  18. 18.
    Li M, Cao H, But PPH, Shaw PC (2011) Identification of herbal medicinal materials using DNA barcodes. J Syst Evol 49:271–283CrossRefGoogle Scholar
  19. 19.
    Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SC (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3:e2802PubMedCrossRefGoogle Scholar
  20. 20.
    Lahaye R, Van Der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928PubMedCrossRefGoogle Scholar
  21. 21.
    Fushimi H, Komatsu K, Isope M, Namba T (1996) 18S ribosomal DNA gene sequences of three Panax species and the corresponding ginseng drugs. Biol Pharm Bull 19:1530–1532PubMedCrossRefGoogle Scholar
  22. 22.
    Fushimi H, Komatsu K, Isobe M, Namba T (1997) Application of PCR-RFLP and MASA analyses on 18S ribosomal RNA gene sequence for the identification of three Ginseng drugs. Biol Pharm Bull 20:765–769PubMedCrossRefGoogle Scholar
  23. 23.
    Yang DY, Fushimi H, Cai SQ, Komatsu K (2004) Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS) analyses of medicinally used Rheum species and their application for identification of Rhei Rhizoma. Biol Pharm Bull 27:661–669PubMedCrossRefGoogle Scholar
  24. 24.
    Sun XQ, Zhu YJ, Guo JL, Peng B, Bai MM, Hang YY (2012) DNA barcoding the Dioscorea in China, a vital group in the evolution of monocotyledon: use of matK gene for species discrimination. PLoS ONE 7:e32057PubMedCrossRefGoogle Scholar
  25. 25.
    Doyle JJ (1991) DNA protocols for plants-CTAB total DNA isolation. In: Hewitt GM (ed) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293CrossRefGoogle Scholar
  26. 26.
    Ho TN, Pringle JS (1995) Gentianaceae. In: Wu ZY, Raven PH (eds) Flora of China. Science Press & Missouri Botanical Garden, Beijing, pp 1–140Google Scholar
  27. 27.
    Tan R, Wolfender JL, Zhang L, Ma W, Fuzzati N, Marston A (1996) Acyl secoiridoids and antifungal constituents from Gentiana macrophylla. Phytochemistry 42:1305–1313PubMedCrossRefGoogle Scholar
  28. 28.
    Xue HG, Wang H, Li DZ, Xue CY, Wang QZ (2008) Differentiation of the traditional Chinese medicinal plants Euphorbia humifusa and E. maculata from adulterants by TaqMan real-time polymerase chain reaction. Planta Med 74:302–304PubMedCrossRefGoogle Scholar
  29. 29.
    Singh RJ (2012) Applications of biotechnology and molecular markers. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement series. CRC, Boca Raton, p 971Google Scholar
  30. 30.
    Neuhaus H, Link G (1987) The chloroplast tRNALys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11:251–257PubMedCrossRefGoogle Scholar
  31. 31.
    Heubl G (2010) New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological technique. Planta Med 76:1963–1974PubMedCrossRefGoogle Scholar
  32. 32.
    Wang CZ, Li P, Ding JY, Peng X, Yuan CS (2007) Simultaneous identification of Bulbus Fritillariae cirrhosae using PCR-RFLP analysis. Phytomedicine 14:628–632PubMedCrossRefGoogle Scholar
  33. 33.
    Sukrong S, Zhu S, Ruangrungsi N, Phadungcharoen T, Palanuvej C, Komatsu K (2007) Molecular analysis of the genus Mitragyna existing in Thailand based on rDNA ITS sequences and its application to identify a narcotic species: Mitragyna speciosa. Biol Pharm Bull 30:1284–1288PubMedCrossRefGoogle Scholar
  34. 34.
    Manissorn J, Sukrong S, Ruangrungsi N, Mizukami H (2010) Molecular phylogenetic analysis of Phyllanthus species in Thailand and the application of polymerase chain reaction- restriction fragment length polymorphism for Phyllanthus amarus identification. Biol Pharm Bull 33:1723–1727PubMedCrossRefGoogle Scholar
  35. 35.
    Quinteiro J, Vidal R, Izquierdo M, Sotelo CG, Chapela MJ, Perez-Martin RI, Rehbein H, Hold GL, Russell VJ, Pryde SE, Rosa C, Santos AT, Rey-Mendez M (2001) Identification of hake species (Merluccius genus) using sequencing and PCR-RFLP analysis of mitochondrial DNA control region sequences. J Agric Food Chem 49:5108–5114PubMedCrossRefGoogle Scholar
  36. 36.
    Dooley JJ, Sage HD, Clarke MAL, Brown HM, Garrett SD (2005) Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study. J Agric Food Chem 53:3348–3357PubMedCrossRefGoogle Scholar
  37. 37.
    Deborah TN, Elizabeth MM, Raina MM (2009) RFLP analysis of PCR sequences. In: Raina MM, Lan LP, Charles PG (eds) Environmental microbiology. Academic/Elsevier, San Diego, p 272Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan 2012

Authors and Affiliations

  • Suchaya Wiriyakarun
    • 1
  • Woraluk Yodpetch
    • 1
  • Katsuko Komatsu
    • 2
    • 3
  • Shu Zhu
    • 2
  • Nijsiri Ruangrungsi
    • 1
  • Suchada Sukrong
    • 1
  1. 1.Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  2. 2.Institute of Natural MedicineUniversity of ToyamaToyamaJapan
  3. 3.21st Century COE ProgramUniversity of ToyamaToyamaJapan

Personalised recommendations