Skip to main content
Log in

Protective effect of plaunotol against doxorubicin-induced renal cell death

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

In searching for a safe and effective compound to be used as a chemoprotective agent to prevent toxicity of the anthracyclin doxorubicin to renal cells, the present study demonstrated that plaunotol, a purified acyclic diterpene from Croton stellatopilosus Ohba, showed potential protection against doxorubicin-induced cell death in human proximal tubule cells. Treatment of renal cells with doxorubicin resulted in a significant decrease in viability of the cells, and we next proved that such toxicity was mainly due to apoptotic cell death. Pretreatment of the cells with plaunotol for at least 9 h prior to doxorubicin exposure improved the cells’ survival. Plaunotol was shown to up-regulate the anti-apoptotic myeloid cell leukemia-1 (Mcl-1) level whereas it had no effect on the Bcl-2 level. The reduction in Mcl-1 after doxorubicin treatment was shown to be closely associated with the toxic action of the drug, and the increase in Mcl-1 induced by plaunotol pretreatment was able to prevent cell death induced by doxorubicin. Furthermore, the protective effect of plaunotol was evaluated in human lung and melanoma cells. Results indicated that plaunotol had no significantly protective effect in human lung carcinoma cells, whereas it sensitized melanoma cells to drug-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lown JW (1993) Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmacol Ther 60:185–214

    Article  PubMed  CAS  Google Scholar 

  2. Mansour MA, El-Kashef HA, Al-Shabanah OA (1999) Effect of captopril on doxorubicin-induced nephrotoxicity in normal rats. Pharmacol Res 39:233–237

    Article  PubMed  CAS  Google Scholar 

  3. Saad SY, Najjar TA, Al-Rikabi AC (2001) The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res 43:211–218. doi:10.1006/phrs.2000.0769

    Article  PubMed  CAS  Google Scholar 

  4. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  PubMed  CAS  Google Scholar 

  5. Burke JF Jr, Laucius JF, Brodovsky HS, Soriano RZ (1977) Doxorubicin hydrochloride-associated renal failure. Arch Intern Med 137:385–388

    Article  PubMed  Google Scholar 

  6. Cheng CY, Sue YM, Chen CH, Hou CC, Chan P, Chu YL, Chen TH, Hsu YH (2006) Tetramethylpyrazine attenuates adriamycin-induced apoptotic injury in rat renal tubular cells NRK-52E. Planta Med 72:888–893. doi:10.1055/s-2006-946695

    Article  PubMed  CAS  Google Scholar 

  7. Ueda N, Shah SV (2000) Tubular cell damage in acute renal failure-apoptosis, necrosis, or both. Nephrol Dial Transplant 15:318–323

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Clark JR Jr, Herman EH, Ferrans VJ (1996) Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol 28:1931–1943

    Article  PubMed  CAS  Google Scholar 

  9. Boonsanit D, Kanchanapangka S, Buranakarl C (2006) l-Carnitine ameliorates doxorubicin-induced nephrotic syndrome in rats. Nephrology (Carlton) 11:313–320. doi:10.1111/J.1440-1797.2006.00592.X

    Article  CAS  Google Scholar 

  10. Boutabet K, Kebsa W, Alyane M, Lahouel M (2010) Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin. Indian J Nephrol 21:101–106

    Google Scholar 

  11. Chen CH, Lin H, Hsu YH, Sue YM, Cheng TH, Chan P, Chen TH (2006) The protective effect of prostacyclin on adriamycin-induced apoptosis in rat renal tubular cells. Eur J Pharmacol 529:8–15. doi:10.1016/J.EJPHAR.2005.10.057

    Article  PubMed  CAS  Google Scholar 

  12. Lebrecht D, Setzer B, Rohrbach R, Walker UA (2004) Mitochondrial DNA and its respiratory chain products are defective in doxorubicin nephrosis. Nephrol Dial Transplant 19:329–336. doi:10.1093/ndt/gfg564

    Article  PubMed  CAS  Google Scholar 

  13. Akgul C (2009) Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 66:1326–1336. doi:10.1007/s00018-008-8637-6

    Article  PubMed  CAS  Google Scholar 

  14. Michels J, Johnson PWM, Packham G (2005) Molecules in focus––Mcl-1. Int J Biochem Cell Biol 37:267–271. doi:10.1016/J.BIOCEL.2004.04.007

    Article  PubMed  CAS  Google Scholar 

  15. Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989. doi:10.1016/j.febslet.2010.05.061

    Article  PubMed  CAS  Google Scholar 

  16. Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M, Hirata S, Watanabe H (1998) Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res 58:5565–5569

    PubMed  CAS  Google Scholar 

  17. Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, Goyal B, Pawel BR, Hogarty MD (2009) Mcl1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule Bcl2-family antagonists. Cancer Biol Ther 8:1587–1595

    Article  PubMed  CAS  Google Scholar 

  18. Lopez-Royuela N, Perez-Galan P, Galan-Malo P, Yuste VJ, Anel A, Susin SA, Naval J, Marzo I (2010) Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochem Pharmacol 79:1746–1758. doi:10.1016/J.BCP.2010.02.010

    Article  PubMed  CAS  Google Scholar 

  19. Wirth T, Kuhnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL, Manns M, Zender L, Kubicka S (2005) Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res 65:7393–7402. doi:10.1158/0008-5472.CAN-04-3664

    Article  PubMed  CAS  Google Scholar 

  20. Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K, Reed JC (1995) Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146:1309–1319

    PubMed  CAS  Google Scholar 

  21. Paduch R, Kandefer-Szerszen M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp (Warsz) 55:315–327. doi:10.1007/s00005-007-0039-1

    Article  CAS  Google Scholar 

  22. Higuchi K, Watanabe T, Tanigawa T, Shiba M, Tominaga K, Fujiwara Y, Oshitani N, Arakawa T (2007) Are gastroprotective drugs useful for gastric ulcer healing: re-evaluation using current ICH E9 guidelines. Inflammopharmacology 15:18–21. doi:10.1007/s10787-006-0300-y

    Article  PubMed  CAS  Google Scholar 

  23. Yamada J, Kawai K, Tsuno NH, Kitayama J, Tsuchiya T, Yoneyama S, Asakage M, Okaji Y, Takahashi K, Nagawa H (2007) Plaunotol induces apoptosis of gastric cancer cells. Planta Med 73:1068–1073. doi:10.1055/s-2007-981578

    Article  PubMed  CAS  Google Scholar 

  24. Yoshikawa N, Yamada J, Tsuno NH, Okaji Y, Kawai K, Tsuchiya T, Yoneyama S, Tanaka J, Shuno Y, Nishikawa T, Nagawa H, Oshima N, Takahashi K (2009) Plaunotol and geranylgeraniol induce caspase-mediated apoptosis in colon cancer. J Surg Res 153:246–253. doi:10.1016/J.JSS.2008.04.021

    Article  PubMed  CAS  Google Scholar 

  25. Dash R, Azab B, Quinn BA, Shen X, Wang XY, Das SK, Rahmani M, Wei J, Hedvat M, Dent P, Dmitriev IP, Curiel DT, Grant S, Wu B, Stebbins JL, Pellecchia M, Reed JC, Sarkar D, Fisher PB (2011) Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to mda-7/IL-24-mediated toxicity. Proc Natl Acad Sci USA 108:8785–8790. doi:10.1073/pnas.1100769108

    Article  PubMed  CAS  Google Scholar 

  26. Dash R, Richards JE, Su ZZ, Bhutia SK, Azab B, Rahmani M, Dasmahapatra G, Yacoub A, Dent P, Dmitriev IP, Curiel DT, Grant S, Pellecchia M, Reed JC, Sarkar D, Fisher PB (2010) Mechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine. Cancer Res 70:5034–5045. doi:10.1158/0008-5472.CAN-10-0563

    Article  PubMed  CAS  Google Scholar 

  27. Chen W, Bai L, Wang X, Xu S, Belinsky SA, Lin Y (2010) Acquired activation of the Akt/cyclooxygenase-2/Mcl-1 pathway renders lung cancer cells resistant to apoptosis. Mol Pharmacol 77:416–423. doi:10.1124/mol.109.061226

    Article  PubMed  CAS  Google Scholar 

  28. Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al-Daccak R, Aoudjit F (2008) Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol Cancer Res 6:42–52. doi:10.1158/1541-7786.MCR-07-0080

    Article  PubMed  CAS  Google Scholar 

  29. Khodadoust MS, Verhaegen M, Kappes F, Riveiro-Falkenbach E, Cigudosa JC, Kim DS, Chinnaiyan AM, Markovitz DM, Soengas MS (2009) Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res 69:6405–6413. doi:10.1158/0008-5472.CAN-09-1063

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Chen W, Zeng W, Bai L, Tesfaigzi Y, Belinsky SA, Lin Y (2008) Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol Cancer Ther 7:1156–1163. doi:10.1158/1535-7163.MCT-07-2183

    Article  PubMed  CAS  Google Scholar 

  31. Murakami K, Okajima K, Harada N, Isobe H, Liu W, Johno M, Okabe H (1999) Plaunotol prevents indomethacin-induced gastric mucosal injury in rats by inhibiting neutrophil activation. Aliment Pharmacol Ther 13:521–530

    Article  PubMed  CAS  Google Scholar 

  32. Ohta Y, Kamiya Y, Imai Y, Arisawa T, Nakano H (2005) Plaunotol prevents the progression of acute gastric mucosal lesions induced by compound 48/80, a mast cell degranulator, in rats. Pharmacology 74:182–192. doi:10.1159/000085388

    Article  PubMed  CAS  Google Scholar 

  33. Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7:249–257. doi:10.1111/j.1582-4934.2003.tb00225.x

    Article  PubMed  CAS  Google Scholar 

  34. Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR (2008) Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci USA 105:20327–20332. doi:10.1073/pnas.0808036105

    Article  PubMed  CAS  Google Scholar 

  35. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351:41–58. doi:10.1007/s11010-010-0709-x

    Article  PubMed  CAS  Google Scholar 

  36. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. doi:10.1038/NRM2308

    Article  PubMed  CAS  Google Scholar 

  37. Liu L, Yang C, Herzog C, Seth R, Kaushal GP (2010) Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity. Biochem Pharmacol 79:137–146. doi:10.1016/j.bcp.2009.08.015

    Article  PubMed  CAS  Google Scholar 

  38. Ou YC, Yang CR, Cheng CL, Li JR, Raung SL, Hung YY, Chen CJ (2009) Indomethacin causes renal epithelial cell injury involving Mcl-1 down-regulation. Biochem Biophys Res Commun 380:531–536. doi:10.1016/j.bbrc.2009.01.094

    Article  PubMed  CAS  Google Scholar 

  39. Yang C, Kaushal V, Shah SV, Kaushal GP (2007) Mcl-1 is downregulated in cisplatin-induced apoptosis, and proteasome inhibitors restore Mcl-1 and promote survival in renal tubular epithelial cells. Am J Physiol Renal Physiol 292:F1710–F1717. doi:10.1152/AJPRENAL.00505.2006

    Article  PubMed  CAS  Google Scholar 

  40. Gong X, Celsi G, Carlsson K, Norgren S, Chen M (2010) N-Acetylcysteine amide protects renal proximal tubular epithelial cells against iohexol-induced apoptosis by blocking p38 MAPK and iNOS signaling. Am J Nephrol 31:178–188. doi:10.1159/000268161

    Google Scholar 

  41. Lin MT, Lee RC, Yang PC, Ho FM, Kuo ML (2001) Cyclooxygenase-2 inducing Mcl-1-dependent survival mechanism in human lung adenocarcinoma CL1.0 cells. Involvement of phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 276:48997–49002. doi:10.1074/JBC.M107829200

    Article  PubMed  CAS  Google Scholar 

  42. Fu H, Yabe Y, Asahi K, Hayashi Y, Murata H, Eguchi H, Tsujii M, Tsuji S, Kawano S (2005) (2E,6Z,10E)-7-Hydroxymethyl-3,11,15-trimethyl-2,6,10,14-hexadecatetraen-1-ol (Plaunotol) increases cyclooxygenase-2 expression via nuclear factor kappaB and cyclic AMP response element in rat gastric epithelial cells. Eur J Pharmacol 524:38–43. doi:10.1016/J.EJPHAR.2005.09.044

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by The Thailand Research Fund through The Royal Golden Jubilee for PhD program (grant no. 5.Q.CU/50/C.1). The authors thank Mr. Krich Rajprasit for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanchai De-Eknamkul or Pithi Chanvorachote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaotham, C., De-Eknamkul, W. & Chanvorachote, P. Protective effect of plaunotol against doxorubicin-induced renal cell death. J Nat Med 67, 311–319 (2013). https://doi.org/10.1007/s11418-012-0683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0683-6

Keywords

Navigation