Skip to main content

Advertisement

Log in

Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hui DY, Howles PN (2005) Molecular mechanisms of cholesterol absorption and transport in the intestine. Semin Cell Dev Biol 16:183–192

    Article  PubMed  CAS  Google Scholar 

  2. Choi H, Eo H, Park K, Jin M, Park E-J, Kim SH, Park JE, Kim S (2007) A water-soluble extract from Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model. Biochem Biophys Res Commun 359:419–425

    Article  PubMed  CAS  Google Scholar 

  3. Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatsara N, Sato H, Herunsale A, Suthisisang C (2006) Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of Hibiscus sabdariffa L. in hypercholesterolemic rats. J Ethnopharmacol 103:252–260

    Article  PubMed  Google Scholar 

  4. Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L, Ratanachamnong P, Srisawat S, Pongrapeeporn KU (2008) The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol 116:439–446

    Article  PubMed  Google Scholar 

  5. Xie W, Wang W, Su H, Xing D, Cai G, Du L (2007) Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: different from fibrates but similar to statins. J Pharmacol Sci 103:267–374

    Article  PubMed  CAS  Google Scholar 

  6. Bhandari U, Sharma JN, Zafar R (1998) The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits. J Ethnopharmacol 61:167–171

    Article  PubMed  CAS  Google Scholar 

  7. Chen CC, Liu LK, Hsu JD, Huang HP, Yang MY, Wang CJ (2005) Mulberry extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. Food Chem 91:601–607

    Article  CAS  Google Scholar 

  8. El-Beshbishy HA, Singab AN, Sinkkonen J, Pihlaja K (2006) Hypolipidemic and antioxidant effects of Morus alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life Sci 78:2724–2733

    Article  PubMed  CAS  Google Scholar 

  9. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T, Zheng YN, Okuda H (2001) Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes Relat Metab Disord 25:1459–1464

    Article  PubMed  CAS  Google Scholar 

  10. Altmann SW, Davis HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann–Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  PubMed  CAS  Google Scholar 

  11. Davis HR, Zhu L, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG, Detmers PA, Graziano MP, Altmann SW (2004) Niemann–Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279:33586–33592

    Article  PubMed  CAS  Google Scholar 

  12. Yamanashi Y, Takada T, Suzuki H (2007) Niemann–Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and β-sitosterol uptake in Caco-2 cells. J Pharmacol Exp Ther 320:559–564

    Article  PubMed  CAS  Google Scholar 

  13. Werder M, Han CH, Wehrli E, Bimmler D, Schulthess G, Hauser H (2001) Role of scavenger receptors SR-BI and CD36 in selective sterol uptake in the small intestine. Biochemistry 40:11643–11650

    Article  PubMed  CAS  Google Scholar 

  14. Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K (1999) Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J Nutr 129:1725–1730

    PubMed  CAS  Google Scholar 

  15. Ikeda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T, Yayabe F, Sugano M (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1127:141–146

    Article  PubMed  CAS  Google Scholar 

  16. Raederstorff DG, Schlachter MF, Elste V, Weber P (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14:326–332

    Article  PubMed  CAS  Google Scholar 

  17. Madhavi BB, Nath AR, Banji D, Madhu MN, Ramalingam R, Swetha D (2009) Extraction, identification, formulation and evaluation of piperine in alginate beads. Int J Pharmacy Pharm Sci 1:156–161

    Google Scholar 

  18. Srinivasan K (2007) Black pepper and its pungent principle––piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748

    Article  PubMed  CAS  Google Scholar 

  19. Vijayakumar RS, Surya D, Senthilkumar R, Nalini N (2002) Hypolipidemic effect of black pepper (Piper nigrum Linn.) in rats fed high fat diet. J Clin Biochem Nutr 32:31–42

    Article  CAS  Google Scholar 

  20. Duangjai A, Ingkaninan K, Limpeanchob N (2011) Potential mechanisms of hypocholesterolaemic effect of Thai spices/dietary extracts. Nat Prod Res 25:341–352

    Article  PubMed  CAS  Google Scholar 

  21. Vijayakumar RS, Nalini N (2006) Lipid-lowering efficacy of piperine from Piper nigrum L. in high-fat diet and antithyroid drug-induced hypercholesterolemic rats. J Food Biochem 30:405–421

    Article  CAS  Google Scholar 

  22. Tachibana S, Hirano M, HiraTa T, Matsuo M, Ikeda I, Ueda K, Sato R (2007) Cholesterol and plant sterol efflux from cultured intestinal epithelial cells is mediated by ATP-binding cassette transporters. Biosci Biotechnol Biochem 71:1886–1895

    Article  PubMed  CAS  Google Scholar 

  23. Yu L, Bharadwaj S, Brown JM, Ma Y, Du W, Davis MA, Michaely P, Liu P, Willingham MC, Rudel LL (2006) Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J Biol Chem 281:6616–6624

    Article  PubMed  CAS  Google Scholar 

  24. Kirana C, Rogers PF, Bennett LE, Abeywardena MY, Patten GS (2005) Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactives. J Agric Food Chem 53:4623–4627

    Article  PubMed  CAS  Google Scholar 

  25. Cogburn N, Donovan MG, Schasteen CS (1991) A model of human small intestinal absorptive cells. 1. Transport barrier. Pharm Res 8(2):210–216

    Article  PubMed  CAS  Google Scholar 

  26. Hidalgo IJ, Raub TJ, Borchard RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749

    PubMed  CAS  Google Scholar 

  27. Cai L, Eckhardt ER, Shi W, Zhao Z, Nasser M, de Villiers WJ, van der Westhuyzen DR (2004) Scavenger receptor class B type I reduces cholesterol absorption in cultured enterocyte CaCo-2 cells. J Lipid Res 45:253–262

    Article  PubMed  CAS  Google Scholar 

  28. Wang J, Chu B, Ge L, Li B, Yan Y, Song B (2009) Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption. J Lipid Res 50:1653–1662

    Article  PubMed  CAS  Google Scholar 

  29. Weinglass AB, Kohler M, Schulte U, Liu J, Nketiah EO, Thomas A, Schmalhofer W, Williams B, Bildl W, McMasters DR, Dai K, Beers L, McCann ME, Kaczorowski GJ, Garcia ML (2008) Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci USA 105(32):11140–11145

    Article  PubMed  CAS  Google Scholar 

  30. Hauser H, Dyer JH, Nandy A, Vega MA, Werder M, Bieliauskaite E, Weber FE, Compassi S, Gemperli A, Boffelli D, Wehrli E, Schulthess G, Phillips MC (1998) Identification of a receptor mediating absorption of dietary cholesterol in the intestine. Biochemistry 37:17843–17850

    Article  PubMed  CAS  Google Scholar 

  31. Altmann SW, Davis HR Jr, Yao X, Laverty M, Compton DS, Zhu LJ, Crona JH, Caplen MA, Hoos LM, Tetzloff G, Priestley T, Burnett DA, Strader CD, Graziano MP (2002) The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta 1580:77–93

    Article  PubMed  CAS  Google Scholar 

  32. van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P, Williams DL, Wettstein P, Schulthess G, Phillips MC, Hauser H (2005) Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry 44(11):4517–4525

    Article  PubMed  Google Scholar 

  33. Mardones P, Quinones V, Amigo L, Moreno M, Miquel JF, Schwarz M, Miettinen HE, Trigatti B, Krieger M, VanPatten S, Cohen DE, Rigotti A (2001) Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res 42(2):170–180

    PubMed  CAS  Google Scholar 

  34. Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA (2005) Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem 280:12710–12720

    Google Scholar 

  35. Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7:508–519

    Article  PubMed  CAS  Google Scholar 

  36. Burgos PV, Klattenhoff C, de la Fuente E, Rigotti A, Gonzalez A (2004) Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis of the scavenger receptor class B type I in MDCK cells. Proc Natl Acad Sci USA 101:3845–3850

    Article  PubMed  CAS  Google Scholar 

  37. Woollett LA, Wang Y, Buckley DD, Yao L, Chin S, Granholm N, Jones PJ, Setchell KD, Tso P, Heubi JE (2006) Micellar solubilisation of cholesterol is essential for absorption in humans. Gut 55:197–204

    Article  PubMed  CAS  Google Scholar 

  38. Mel’nikov SM, Seijen ten Hoorn JW, Eijkelenboom AP (2004) Effect of phytosterols and phytostanols on the solubilization of cholesterol by dietary mixed micelles: an in vitro study. Chem Phys Lipids 127(2):121–141

    Article  PubMed  Google Scholar 

  39. Ikeda I, Yamahira T, Kato M, Ishikawa A (2010) Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J Agric Food Chem 58(15):8591–8595

    Article  PubMed  CAS  Google Scholar 

  40. Nagaoka S, Nakamura A, Shibata H, Kanamaru Y (2010) Soystatin (VAWWMY), a novel bile acid-binding peptide, decreased micellar solubility and inhibited cholesterol absorption in rats. Biosci Biotechnol Biochem 74(8):1738–1741

    Article  PubMed  CAS  Google Scholar 

  41. Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, Boll PM (1997) Phytochemistry of the genus Piper. Phytochemistry 46(4):597–673

    Article  CAS  Google Scholar 

  42. Jesch ED, Carr TP (2006) Sitosterol reduces micellar cholesterol solubility in model bile. Nutr Res 26(11):579–584

    Article  CAS  Google Scholar 

  43. Matsuoka K, Kajimoto E, Horiuchi M, Honda C, Endo K (2010) Competitive solubilization of cholesterol and six species of sterol/stanol in bile salt micelles. Chem Phys Lipids 163(4–5):397–402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Norman Scholfield for suggestions in preparing the manuscript. This study was financial supported by the National Research Council of Thailand to Naresuan University (RX-AR-032/2552) and the Thailand Research Fund (MRG5180254). The graduate student was supported by the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree from the Commission on Higher Education, Thailand, and the Center of Excellence for Innovation in Chemistry (PERCH-CIC).

Conflict of interest

All authors declare no conflict of interest in any aspects. All funding agencies supported this works are non-profit organizations. This work has been designed based on scientific judgment of the authors with no potential of influences from outsiders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanteetip Limpeanchob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duangjai, A., Ingkaninan, K., Praputbut, S. et al. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins. J Nat Med 67, 303–310 (2013). https://doi.org/10.1007/s11418-012-0682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0682-7

Keywords

Navigation