Journal of Natural Medicines

, Volume 67, Issue 1, pp 51–60 | Cite as

Effect of Cissampelos pareira root extract on isoproterenol-induced cardiac dysfunction

  • Bhulan Kumar Singh
  • Krishna Kolappa Pillai
  • Kanchan Kohli
  • Syed Ehtaishamul Haque
Original Paper


The aim of this study was to assess the cardioprotective effect of Cissampelos pareira root extract on isoproterenol-induced cardiac dysfunction in rats. Male albino Wistar rats were randomly divided into eight groups and received either normal saline (0.5 ml/kg, intraperitoneally), isoproterenol (5 mg/kg, intraperitoneally), C. pareira (100 and 200 mg/kg, by gavage, respectively) alone, amlodipine (9 mg/kg, by gavage) alone, C. pareira (100 and 200 mg/kg, respectively) + isoproterenol and amlodipine (9 mg/kg) + isoproterenol, once a day for 30 days, respectively. Isoproterenol-induced cardiac dysfunction was characterized by a significant (P < 0.001) increase in the heart weigh/body weight ratio, serum calcineurin, nitric oxide, lactate dehydrogenase, and thiobarbituric acid reactive substance levels, as well as a significant decrease in serum-reduced glutathione, cardiac glutathione peroxidase, glutathione reductase, and glutathione-S-transferase levels, which were significantly (P < 0.05 and P < 0.01) improved by C. pareira treatment. No significant alteration was observed in the group treated with C. pareira alone compared with the control. C. pareira treatment also restored histopathological changes observed in isoproterenol-induced rats. Amlodipine is used as standard drug in this study. Thus, these results suggest that the attenuation of isoproterenol-induced cardiac dysfunction by treatment with ethanolic root extract of C. pareira may be due to amelioration of calcineurin activity and free radical formation, and by augmentation of antioxidant enzymes activities.


Cissampelos pareira Isoproterenol Cardiac hypertrophy Oxidative stress Calcineurin 



The authors are grateful to University Grants Commission, New Delhi, for providing financial assistance in the form of UGC-BSR fellowship. Thanks are also due to Ranbaxy Laboratory, Gurgaon and Torrent Pharmaceuticals Limited, Baddi, India for providing amlodipine besylate, and trifluoperazine hydrochloride, respectively.

Conflict of interest



  1. 1.
    Cohn JN (1989) The sympathetic nervous system in heart failure. J Cardiovasc Pharmacol 14(Suppl 5):S57–S61PubMedGoogle Scholar
  2. 2.
    Fujita T, Noda H, Ito Y, Isaka M, Sato Y, Ogata E (1989) Increased sympathoadrenomedullary activity and left ventricular hypertrophy in young patients with borderline hypertension. J Mol Cell Cardiol 21:31–38PubMedCrossRefGoogle Scholar
  3. 3.
    Stewart JM, Patel MB, Wang J, Ochoa M, Gewitz M, Loud AV, Anversa P, Hintze TH (1992) Chronic elevation of norepinephrine in conscious dogs produces hypertrophy with no loss of LV reserve. Am J Physiol 262:H331–H339PubMedGoogle Scholar
  4. 4.
    Zierhut W, Zimmer HG (1989) Significance of myocardial α- and β-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65:1417–1425PubMedCrossRefGoogle Scholar
  5. 5.
    Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398PubMedCrossRefGoogle Scholar
  6. 6.
    Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34:379–388PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, Nagai Y, Fujisawa Y, Miyatake A, Abe Y (2005) Cardiac oxidative stress in acute and chronic isoproterenol infused rats. Cardiovasc Res 65:230–238PubMedCrossRefGoogle Scholar
  8. 8.
    Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283PubMedCrossRefGoogle Scholar
  9. 9.
    Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, Camilion de Hurtado MC, Cingolani HE (2003) Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension 41:1324–1329PubMedCrossRefGoogle Scholar
  10. 10.
    Mashour NH, Lin GI, Frishman WH (1998) Herbal medicine for the treatment of cardiovascular disease: review article. Arch Intern Med 158:2225–2234PubMedCrossRefGoogle Scholar
  11. 11.
    Anonymous   (1992) Wealth of India: raw materials, vol 3. Council of Scientific and Industrial Research Publication, New DelhiGoogle Scholar
  12. 12.
    Caceres A, Giron LM, Martinez AM (1987) Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J Ethnopharmacol 19:233–245PubMedCrossRefGoogle Scholar
  13. 13.
    Kiritikar KR, Basu BD (2000) Indian medicinal plants, vol 1. Sri Satguru Publications, DelhiGoogle Scholar
  14. 14.
    Patnaik GK, Pradhan SN, Vohra MM (1973) Effects of hayatin methochloride and (+)-tubocurarine chloride on autonomic ganglia of cats. Indian J Exp Biol 11:89–94PubMedGoogle Scholar
  15. 15.
    Amresh G, Rao CV, Singh PN (2007) Antioxidant activity of Cissampelos pareira on benzo(a)pyrene-induced mucosal injury in mice. Nutr Res 27:625–632CrossRefGoogle Scholar
  16. 16.
    Bafna AR, Mishra SH (2005) Immunomodulatory activity of methanol extract of roots of Cissampelos pareira Linn. Ars Pharmaceutica 46:253–262Google Scholar
  17. 17.
    Dwuma-Badu D, Ayim JSK, Mingle CA, Tackie AN, Slatkin DJ, Knapp JE, SchiffJr PL (1975) Alkaloids of Cissampelos pareira. Phytochemistry 14:2520–2521CrossRefGoogle Scholar
  18. 18.
    DeFreitas MR, Cortes SF, Thomas G, Barbosa Filho JM (1996) Modification of Ca2+-metabolism in the rabbit aorta as a mechanism of spasmolytic action of warifteine, a bisbenzylisoquinoline alkaloid isolated from the leaves of Cissampelos sympodialis Eichl. (Menispermaceae). J Pharm Pharmacol 48:332–336CrossRefGoogle Scholar
  19. 19.
    Wei-Xing Y, Ming-Xing J (2002) Effects of tetrandrine on cardiovascular electrophysiologic properties. Acta Pharmacol Sin 23:1069–1074Google Scholar
  20. 20.
    Nishikawa N, Masuyama T, Yamamoto K, Sakata Y, Mano T, Miwa T, Sugawara M, Hori M (2001) Long-term administration of amlodipine prevents decompensation to diastolic heart failure in hypertensive rats. J Am Coll Cardiol 38:1539–1545PubMedCrossRefGoogle Scholar
  21. 21.
    Trease GE, Evans WC (1989) Pharmacognosy. Brailliar Tiridel and Macmillian Publishers, LondonGoogle Scholar
  22. 22.
    Amresh G, Singh PN, Rao CV (2008) Toxicological screening of traditional medicine Laghupatha (Cissampelos pareira) in experimental animals. J Ethnopharmacol 116:454–460PubMedCrossRefGoogle Scholar
  23. 23.
    Amresh G, Reddy GD, Rao ChV, Singh PN (2007) Evaluation of anti-inflammatory activity of Cissampelos pareira root in rats. J Ethnopharmacol 110:526–531PubMedCrossRefGoogle Scholar
  24. 24.
    Padma S, Subramanyam C (1999) Extracellular calcineurin: identification and quantitation in serum and amniotic fluid. Clin Biochem 32:491–494PubMedCrossRefGoogle Scholar
  25. 25.
    Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304PubMedCrossRefGoogle Scholar
  26. 26.
    Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169PubMedCrossRefGoogle Scholar
  27. 27.
    Clairborne A (1985) Assay of catalase. In: Greenwald RA (ed) Hand book of methods of oxygen free radical research. CRC Press, Boca Raton, pp 283–284Google Scholar
  28. 28.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474PubMedCrossRefGoogle Scholar
  29. 29.
    Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ (1984) Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol 33:1801–1807PubMedCrossRefGoogle Scholar
  30. 30.
    Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480PubMedGoogle Scholar
  31. 31.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  32. 32.
    Lowary OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  33. 33.
    Rana OR, Saygili E, Meyer C, Gemein C, Krüttgen A, Andrzejewski MG, Ludwig A, Schotten U, Schwinger RH, Weber C, Weis J, Mischke K, Rassaf T, Kelm M, Schauerte P (2009) Regulation of nerve growth factor in the heart: the role of the calcineurin-NFAT pathway. J Mol Cell Cardiol 46:568–578PubMedCrossRefGoogle Scholar
  34. 34.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  35. 35.
    Hu A, Jiao X, Gao E, Koch WJ, Sharifi-Azad S, Grunwald Z, Ma XL, Sun JZ (2006) Chronic beta-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress. J Pharmacol Exp Ther 318:469–475PubMedCrossRefGoogle Scholar
  36. 36.
    Suchalatha S, Shyamala Devi CS (2004) Protective effect of Terminalia chebula against experimental myocardial injury induced by isoproterenol. Indian J Exp Biol 42:174–178PubMedGoogle Scholar
  37. 37.
    Panda VS, Naik SR (2008) Cardioprotective activity of Ginkgo biloba phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp Toxicol Pathol 60:397–404PubMedCrossRefGoogle Scholar
  38. 38.
    Liao Y, Asakura M, Takashima S, Kato H, Asano Y, Shintani Y, Minamino T, Tomoike H, Hori M, Kitakaze M (2005) Amlodipine ameliorates myocardial hypertrophy by inhibiting EGFR phosphorylation. Biochem Biophys Res Commun 327:1083–1087PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer 2012

Authors and Affiliations

  • Bhulan Kumar Singh
    • 1
  • Krishna Kolappa Pillai
    • 1
  • Kanchan Kohli
    • 2
  • Syed Ehtaishamul Haque
    • 1
  1. 1.Department of Pharmacology, Faculty of PharmacyHamdard UniversityNew DelhiIndia
  2. 2.Department of Pharmaceutics, Faculty of PharmacyHamdard UniversityNew DelhiIndia

Personalised recommendations