Skip to main content

Protective effect of herbomineral formulation (Dolabi) on early diabetic nephropathy in streptozotocin-induced diabetic rats

Abstract

The effect of a herbomineral formulation (HMF) on early diabetic nephropathy was investigated. Diabetes was induced in Wistar rats by administering streptozotocin (55 mg/kg, intraperitoneally). The occurrence of early diabetic nephropathy in rats was revealed by high plasma glucose and depleted liver glycogen, decreased glucose uptake by peripheral tissue, impaired renal function, increased antioxidants and lipid peroxidation in kidney. These changes were accompanied by elevated malondialdehyde, glutathione and superoxide dismutase activity in kidney. Furthermore, increased total urine volume, urinary albumin excretion rate, urinary albumin to creatinine ratio, increased relative kidney weight, decreased glomerular filtration rate (GFR) and urinary creatinine were also observed in diabetic nephropathy rats. HMF treatment significantly lowered blood glucose, glycosylated hemoglobin, creatinine, blood urea nitrogen, triglycerides, total cholesterol, serum albumin level, total urine volume, urinary albumin excretion rate, urinary albumin to creatinine ratio and relative kidney weight, and increased urinary creatinine and GFR. Altered levels of antioxidants, viz. lipid peroxidation, glutathione and superoxide dismutase (SOD), in kidney of diabetic nephropathy rats were restored. Histopathological findings indicated dense mesangial matrix in the glomeruli of diabetic nephropathy rats, which may be due to over-activation of matrix metalloproteinases and was reduced following HMF treatment. Our experimental findings clearly demonstrate that HMF has an ability to prevent the progression of early diabetic nephropathy. Such protective effect of HMF might be due to the presence of flavonoids (catechin, quercetin, rutin) and triterpene saponins (oleanolic acid and gymnemic acid) which are known to possess potent antioxidant properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Takako Y, Noriko Y, Eun JC, Tokako N, Shigeru O (2004) A study on the effect to diabetic nephropathy of Hachimi-jio-gan in rats. Nephron Exp Nephrol 97:e38–e48

    Article  Google Scholar 

  2. Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452

    PubMed  Article  CAS  Google Scholar 

  3. Kikkawa R, Koya D, Haneda M (2003) Progression of diabetic nephropathy. Am J Kidney Dis 41(3–2):S19–S21

    PubMed  Article  CAS  Google Scholar 

  4. Wadood A, Wadood N, Shah SA (1989) Effects of Acacia arabica and Caralluma edulis on blood glucose levels of normal and alloxan diabetic rabbits. J Pak Med Assoc 39(8):208–212

    PubMed  CAS  Google Scholar 

  5. Sagrawat H, Mann AS, Kharya MD (2006) Pharmacological potential of Eugenia jambolana: a review. Pharmacogn Mag 2(6):96–105

    CAS  Google Scholar 

  6. Gholap S, Kar A (2003) Effect of Inula racemosa root and Gymnema sylvestre leaf extract in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones. Pharmazie 58:413–415

    PubMed  CAS  Google Scholar 

  7. Robert A (2000) Zinc in relation to diabetes and oxidative disease. J Nutr 130(5):1509S–1511S

    Google Scholar 

  8. Sajeeth CI, Manna PK, Manavalan R, Jolly CI (2010) Quantitative estimation of gallic acid, rutin and quercetin in certain herbal plants by HPTLC method. Der Chemica Sinica 1(2):80–85

    CAS  Google Scholar 

  9. Nehete JY, Deshmukh VN, Shewale VV, Narkhede MR, Aurangabadkar VM (2009) Quantitation of oleanolic acid in Achyranthes aspera L. roots and leaves extracts by high-performance thin-layer chromatography. Int J Pharm Res Dev 2(7). ISSN 0974-9446

    Google Scholar 

  10. Trinder P (1969) Determination of blood glucose using an oxidase peroxidase system with a non-carcinogenic chromogen. Ann Clin Biochem 6:24–30

    CAS  Google Scholar 

  11. Anurag K, Anand S, Kanwaljit C (2009) Attenuation of reno-inflammatory cascade in experimental model of diabetic nephropathy by sesamol. J Agric Food Chem 57(14):6123–6128

    Article  Google Scholar 

  12. Greg H, Terri J (2007) Methods in renal research: Rodent models of streptozotocin-induced diabetic nephropathy. Nephrol 12(3):261–266

    Article  Google Scholar 

  13. Sassy-Prigent C, Heudes D, Jouquey S, Auberval D, Belair MF, Michel O et al (1995) Morphometric detection of incipient glomerular lesions in diabetic nephropathy in rats. Protective effects of ACE inhibition. Lab Invest 73:64–71

    PubMed  CAS  Google Scholar 

  14. Godkar PB (1994) Clinical biochemistry: principles and practice, 3rd edn. Bhalani Publishing House, Bombay, pp 115–116

    Google Scholar 

  15. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–355

    PubMed  Article  CAS  Google Scholar 

  16. Beutler E, Duron O, Kelly BM (1963) Improved method for determination of blood glutathione. J Lab Clin Med 61(5):882–888

    PubMed  CAS  Google Scholar 

  17. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–192

    PubMed  Article  CAS  Google Scholar 

  18. Yokozawa T, Nakagawa T, Wakaki K, Koizumi F (2001) Animal model of diabetic nephropathy. Exp Toxicol Pathol 53:359–363

    PubMed  Article  CAS  Google Scholar 

  19. Pitchai B, Vishal C, Vijay K, Akash J, Jayarami R, Manjeet S (2008) Experimental models for nephropathy. J Renin Angiotensin Aldosterone Syst 9:189–195

    Article  Google Scholar 

  20. Gojo A, Utsunomiya K, Taniguchi K (2007) The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol 568:242–247

    PubMed  Article  CAS  Google Scholar 

  21. Singh J, Budhiraja S, Lal H, Arora BR (2006) Renoprotection by telmisartan versus benazepril in streptozotocin induced diabetic nephropathy. Iran J Pharmacol Ther 5:135–139

    Google Scholar 

  22. Larkins RG, Dunlop ME (1992) The link between hyperglycemia and diabetic nephropathy. Diabetologia 35:499–504

    PubMed  Article  CAS  Google Scholar 

  23. Murali B, Dhananjay N, Umrani G, Ramesh G (2003) Effect of chronic treatment with losartan on streptozotocin-induced renal dysfunction. Mol Cell Biochem 249:85–90

    PubMed  Article  CAS  Google Scholar 

  24. Cooper ME (1998) Pathogenesis, prevention and treatment of diabetic nephropathy. Lancet 352:213–219

    PubMed  Article  CAS  Google Scholar 

  25. Yebe-nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–33

    Google Scholar 

  26. Alhouli MJ, Thomson M, Al-Qattan K, Muslim Ali DJS (2010) Biochemical and histological changes in the kidney of streptozotocin-induced diabetic rats: effects of garlic and ginger compared to aspirin. FASEB J 24(Meeting abstract Supplement):659.1

  27. Bjorn S, Stefan H, George J, Bo-Lennart J, Karin E, Britta I et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538

    Article  Google Scholar 

  28. Derubertis FR, Craven PA (1994) Activation of protein kinase C in glomerular cells in diabetes: mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 43:1–8

    PubMed  Article  CAS  Google Scholar 

  29. Saito T (1997) Abnormal lipid metabolism and renal disorders. Tohoku J Exp Med 181:321–333

    PubMed  Article  CAS  Google Scholar 

  30. Kramer-Guth A, Quaschning T, Greiber S, Wanner C (1996) Potential role of lipids in the progression of diabetic nephropathy. Clin Nephrol 46:262–265

    PubMed  CAS  Google Scholar 

  31. Morgensen CE (1982) Long term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J 285:685–688

    Article  Google Scholar 

  32. Bell DS (1991) Diabetic nephropathy: changing concepts of pathogenesis and treatment. Am J Med Sci 301:195–200

    PubMed  Article  CAS  Google Scholar 

  33. Williamson JR, Chang K, Frangos M, Hasan KS et al (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42(6):801–813

    PubMed  Article  CAS  Google Scholar 

  34. Ahmed FN, Naqvi FN, Shafiq F (2006) Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Ann N Y Acad Sci 1084:481–489

    PubMed  Article  CAS  Google Scholar 

  35. Evans J, Goldfine I, Maddux B, Grodsky G (2002) Oxidative stress and stress activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    PubMed  Article  CAS  Google Scholar 

  36. Aksoy N, Vural H, Sabuncu T, Aksoy S (2003) Effects of melatonin on oxidative antioxidative status of tissues in streptozotocin induced diabetic rats. Cell Biochem Funct 21(2):121–125

    PubMed  Article  CAS  Google Scholar 

  37. Otsyula M, King MS, Ketcham TG, Sanders RA, Watkins JB (2003) Oxidative stress in rats after 60 days of hypergalactosemia or hyperglycemia. Int J Toxicol 22(6):423–427

    PubMed  CAS  Google Scholar 

  38. Hazem H, Kataya H, Alaa Eldin A (2008) Red cabbage (Brassica oleracea) ameliorates diabetic nephropathy in rats. eCAM 5(3):281–287

    Google Scholar 

  39. Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28(6):659–671

    PubMed  Article  CAS  Google Scholar 

  40. Sundaram R, Mitra SK (2007) Antioxidant activity of ethyl acetate soluble fraction of Acacia arabica bark in rats. Ind J Pharmacol 39:33–38

    Article  Google Scholar 

  41. Seyer-Hansen K (1976) Renal nephropathy in streptozotocin diabetic rats. Clin Sci Mol Med 51:551–555

    CAS  Google Scholar 

  42. Kang SS, Fears R, Noirot S, Mbanya JN, Yudkin J (1982) Changes in metabolism of rat kidney and liver caused by experimental diabetes by dietary sucrose. Diabetologia 22:285–288

    PubMed  Article  CAS  Google Scholar 

  43. Yotsumoto T, Naitoh T, Tanaka S (1997) Effects of specific antagonist of angiotensin II receptors and captopril on diabetic nephropathy in mice. Jpn J Pharmacol 75:59–64

    PubMed  Article  CAS  Google Scholar 

  44. Thrailkill KM, Clay Bunn R, Fowlkes JL (2009) Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 35(1):1–10

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. M.N. Navale, Founder President, Sinhgad Technical Education Society, Pune and Dr K.S. Jain, Principal, Sinhgad College of Pharmacy, Vadgaon, Pune, India for providing facilities to carryout this work.

Conflict of interest

All authors reported that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh R. Naik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baig, M.A., Gawali, V.B., Patil, R.R. et al. Protective effect of herbomineral formulation (Dolabi) on early diabetic nephropathy in streptozotocin-induced diabetic rats. J Nat Med 66, 500–509 (2012). https://doi.org/10.1007/s11418-011-0614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0614-y

Keywords

  • Diabetic nephropathy
  • Kidney antioxidants
  • Hyperglycemia
  • Serum lipids
  • Kidney histoarchitecture
  • Herbomineral formulation