Skip to main content

In vitro cytotoxic screening of selected Saudi medicinal plants

Abstract

Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC50) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arcamone F, Cassinelli G, Casazza AM (1980) New antitumor drugs from plants. J Ethnopharmacol 2:149–160

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Hudson JB (1989) Antiviral compounds from plants, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  3. 3.

    Abdel-Sattar EA, Elberry AA, Harraz FM, Ghareib SA, Nagy AA, Gabr SA (2011) Antihyperglycemic and hypolipidaemic effects of the methanolic extract of Saudi mistletoe (Viscum schimperi Engl.). J Adv Res 2:171–177

    Article  Google Scholar 

  4. 4.

    Elberry AA, Harraz FM, Ghareib SA, Nagy AA, Gabr SA, Abdel-Sattar E (2011) Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. Int J Diabetes Mellitus (in press). doi:10.1016/j.ijdm.2011.01.004

  5. 5.

    Abdel-Sattar E, Zaitoun AA, Farag MA, El Gayed SH, Harraz FM (2010) Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat Prod Res 24:226–235

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Abdel-Sattar E, Maes L, Salama MM (2010) In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother Res 24:1322–1328

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Boik J (2001) Natural compounds in cancer therapy. Oregon Medical Press, Princeton, MN

    Google Scholar 

  9. 9.

    Pettit GR, Goswami A, Cragg GM, Schmidt JM, Zou JC (1984) Antineoplastic agents, 103. The isolation and structure of hypoestestatins 1 and 2 from the East African Hypoëstes verticillaris. J Nat Prod 47:913–919

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Abe F, Hirokawa M, Yamauchi T, Honda K, Hayashi N, Ishii M, Imagawa S, Iwahana M (1998) Further investigation of phenanthroindolizidine alkaloids from Tylophora tanakae. Chem Pharm Bull 46:767–769

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Narasimha Rao K, Bhattacharya RK, Venkatachalam SR (1998) Thymidylate synthase activity in leukocytes from patients with chronic myelocytic leukemia and acute lymphocytic leukemia and its inhibition by phenanthroindolizidine alkaloids pergularinine and tylophorinidine. Cancer Lett 128:183–188

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Staerk D, Christensen J, Lemmich E, Duus JO, Olsen CE, Jaroszewski JW (2000) Cytotoxic activity of some phenanthroindolizidine n-oxide alkaloids from Cynanchum vincetoxicum. J Nat Prod 63:1584–1586

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng YC (2004) Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res 64:678–688

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Cusack JC Jr, Liu R, Baldwin AS Jr (2000) Inducible chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothe cin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-κB activation. Cancer Res 60:2323–2330

    PubMed  CAS  Google Scholar 

  15. 15.

    Adesomoju AA, Okogun JI, Cava MP, Carroll PJ (1983) Hypoestoxide, a new diterpene from Hypoestes rosea (Acanthaceae). Heterocycles 20:2125–2128

    Article  CAS  Google Scholar 

  16. 16.

    Ojo-Amaize EA, Nchekwube EJ, Cottam HB, Bai R, Verdier-Pinard P, Kakkanaiah VN, Varner JA, Leoni L, Okogun JI, Adesomoju AA, Oyemade OA, Hamel E (2002) Hypoestoxide, a natural nonmutagenic diterpenoid with antiangiogenic and antitumor activity: possible mechanisms of action. Cancer Res 62:4007–4014

    PubMed  CAS  Google Scholar 

  17. 17.

    Ojo-Amaize EA, Cottam HB, Oyemade OA, Okogun JI, Nchekwube EJ (2007) Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model. World J Gastroenterol 13:4586–4588

    PubMed  CAS  Google Scholar 

  18. 18.

    Muhammad I, Mossa JS, Al-Yahya MA, El-Feraly FS, McPhail AT (1996) Hypoestenone: a fusicoccane diterpene ketone from Hypoestes forskalei. Phytochemistry 44:125–129

    Article  Google Scholar 

  19. 19.

    Muhammad I, Mossa JS, Ramadan AF, El-Feraly FS, Hufford CD (1998) Additional diterpene ketones from Hypoestes forskalei. Phytochemistry 47:1331–1336

    Article  CAS  Google Scholar 

  20. 20.

    Gupta GL, Rana AC (2007) Withania somnifera (Ashwagandha): a review. Pharmacog Rev 1:129–136

    CAS  Google Scholar 

  21. 21.

    Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74:125–132

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Abdeljebbar LH, Benjouad A, Morjani H, Merghoub N, El Haddar S, Humam M, Christen P, Hostettmann K, Bekkouche K, Amzazi S (2009) Antiproliferative effects of withanolides from Withania adpressa. Thérapie 64:121–127

    PubMed  Article  Google Scholar 

  23. 23.

    Kuo KW, Hsu SH, Li YP, Lin WL, Liu LF, Chang LC, Lin CC, Lin CN, Sheu HM (2000) Anticancer activity evaluation of the Solanum glycoalkaloid solamargine: triggering apoptosis in human hepatoma cells. Biochem Pharmacol 60:1865–1873

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Badami S, Manohara Reddy SA, Kumar EP, Vijayan P, Suresh B (2003) Antitumor activity of total alkaloid fraction of Solanum pseudocapsicum leaves. Phytother Res 17:1001–1004

    PubMed  Article  Google Scholar 

  25. 25.

    Nakamura M, Ishibashi M, Okuyama E, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K (2000) Cytotoxic pregnanes from leaves of Adenium obesum. Nat Med 54:158–159

    CAS  Google Scholar 

  26. 26.

    Arai MA, Tateno C, Koyano T, Kowithayakorn T, Kawabe S, Ishibashi M (2011) New hedgehog/GLI-signaling inhibitors from Adenium obesum. Org Biomol Chem 9:1133–1139

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Hoffmann JJ, Cole JR (1977) Phytochemical investigation of Adenium obesum Forskal (Apocynaceae): isolation and identification of cytotoxic agents. J Pharm Sci 66:1336–1338

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Amin A, Mousa M (2007) Merits of anti-cancer plants from the Arabian Gulf region. Cancer Ther 5:55–66

    Google Scholar 

  29. 29.

    Mothana RAA, Gruenert R, Bednarski PJ, Lindequist U (2009) Evaluation of the in vitro anticancer, antimicrobial and antioxidant activities of some Yemeni plants used in folk medicine. Pharmazie 64:260–268

    PubMed  CAS  Google Scholar 

  30. 30.

    Al-Turki TA (2004) A prelude to the study of the flora of Jabal Fayfa in Saudi Arabia. Kuwait J Sci Eng 31:77–145

    Google Scholar 

  31. 31.

    Kafaru E (1994) Immense help from nature’s workshop. Elikaf Health Services Ltd., Lagos, Nigeria

    Google Scholar 

  32. 32.

    Fasanu PO, Oyedapo OO (2008) Phragmanthin-peptide from fresh leaves of African mistletoe (Phragmanthera incana): purification and metabolic activities. In: Singh VK, Govil JN, Sharma RK (eds) Recent progress in medicinal plants, vol 19. Stadium Press, Houston, TX, pp 39–47

    Google Scholar 

  33. 33.

    Wahab OM, Ayodele AE, Moody JO (2010) TLC phytochemical screening in some Nigerian Loranthaceae. J Pharmacog Phytother 2:64–70

    CAS  Google Scholar 

  34. 34.

    Lampronti I, Saab A, Gambari R (2005) Medicinal plants from Lebanon: effects of essential oils from Pistacia palaestina on proliferation and erythroid differentiation of human leukemic K562 cells. Minerva Biotech 17:153–158

    Google Scholar 

  35. 35.

    Bendaoud H, Romdhane M, Souchard JP, Cazaux S, Bouajila J (2010) Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J Food Sci 75:C466–C472

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Gushash AS (2006) Plants in the mountains of Sarat and Hejaz. Al Madinah, KSA, Sarawat

  37. 37.

    Abdel-Sattar E, Harraz FM, Ghareib SA, Elberry AA, Gabr S, Suliaman MI (2011) Antihyperglycaemic and hypolipidaemic effects of the methanolic extract of Caralluma tuberculata in streptozotocin-induced diabetic rats. Nat Prod Res 25:1171–1179. doi:10.1080/14786419.2010.490782

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Schun Y, Cordell GA (1987) Cytotoxic steroids of Gelsemium sempervirens. J Nat Prod 50:195–198

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    García VP, Bermejo J, Rubio S, Quintana J, Estévez F (2011) Pregnane steroidal glycosides and their cytostatic activities. Glycobiology 21:619–624

    PubMed  Article  Google Scholar 

  40. 40.

    Blitzke T, Masaoud M, Schmidt J (2000) Constituents of Eulophia petersii. Fitoterapia 71:593–594

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Lee YH, Park JD, Baek NI, Kim SI, Ahn BZ (1995) In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Med 61:178–180

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Huang X, Kong L (2006) Steroidal saponins from roots of Asparagus officinalis. Steroids 71:171–176

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Shao Y, Chin CK, Ho CT, Ma W, Garrison SA, Huang MT (1996) Anti-tumor activity of the crude saponins obtained from asparagus. Cancer Lett 104:31–36

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia, for funding this project (No. AT-67-28). The authors also thank the staff members of the Department of Biology, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia, for the identification of the plant materials and to Prof. Ahmed S. Gushash, Faculty of Art, Al-Baha University for supplying some of plant materials.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Essam A. Abdel-Sattar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Almehdar, H., Abdallah, H.M., Osman, AM.M. et al. In vitro cytotoxic screening of selected Saudi medicinal plants. J Nat Med 66, 406–412 (2012). https://doi.org/10.1007/s11418-011-0589-8

Download citation

Keywords

  • Plant extracts
  • In vitro cytotoxic activity
  • Sulforhodamine B colorimetric assay
  • Caralluma quadrangula
  • Hypoestes forskaolii
  • Solanum glabratum