Skip to main content
Log in

A new iridoid glycoside and NO production inhibitory activity of compounds isolated from Russelia equisetiformis

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

From the 1-BuOH-soluble fraction of a MeOH extract of the leaves of Russelia equisetiformis, one new iridoid glucoside was isolated along with 24 known compounds, comprising iridoids and iridoid glucosides, phenyl propane glucosides, phenyl ethanoids, lignan glucosides, and flavonoid glucosides. The structure of the new compound was elucidated to be 10-O-cinnamoyl sinuatol. Of the 25 compounds isolated, rehmaglutin B exhibited moderate inhibitory activity toward NO production, which was not associated with cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Awe EO, Adeloya A, Idowu T, Olajide OA, Makinde MJ (2008) Antinociceptive effect of Russelia equisetiformis leaf extracts: identification of its active constituents. Phytomedicine 15:301–305

    Article  PubMed  CAS  Google Scholar 

  2. Awe EO, Makinde JM, Olajide OA, Wakeel OK (2006) Membrane stabilizing activity: a possible mechanism of action for anti-inflammatory and analgesic properties of Russelia equisetiformis. Int J Pharmacol 2:447–450

    Article  CAS  Google Scholar 

  3. Awe EO, Makinde JM, Adeloye OA, Banjoko SO (2009) Membrane stabilizing activity of Russelia equisetiformis Schltdlht & Cham. J Nat Prod (Gorakhpur India) 2:3–9

    CAS  Google Scholar 

  4. Awe EO, Banjoko OS, Makinde MJ (2010) Free radical scavenging: a possible mechanism of action for anti-inflammatory activity of Russelia equisetiformis (Schlect & Cham) (Scrophulariaceae). Inflammopharmacology 18:179–185

    Article  PubMed  Google Scholar 

  5. Kim KH, Kim S, Jung MY, Ham IH, Whang WK (2009) Anti-inflammatory phenylpropanoid glycosides from Clerodendron trichotomum leaves. Arch Pharm Res 32:7–13

    Article  PubMed  CAS  Google Scholar 

  6. Morota T, Nishimura H, Sasaki H, Chin M, Sunaga K, Katsuhara T, Mitsuhashi H (1989) Five cyclopentanoid monoterpenes from Rehmannia glutinosa. Phytochemistry 28:2385–2391

    Article  CAS  Google Scholar 

  7. Yoshikawa M, Fukuda Y, Taniyama T, Kitagawa I (1986) Absolute stereostructures of rehmaglutin C and glutinoside. A new iridoid lactone and a new chlorinated iridoid glucoside from Chinese Rehmanniae Radix. Chem Pharm Bull 34:1403–1406

    CAS  Google Scholar 

  8. Morota T, Sasaki H, Nishimura H, Sugama K, Chin M (1989) Two iridoid glycosides from Rehmannia glutinosa. Phytochemistry 28:2149–2153

    Article  CAS  Google Scholar 

  9. El-Naggar SF, Doskotch RW (1980) Specioside: a new iridoid glycoside from Catalpa speciosa. J Nat Prod 43:524–526

    Article  CAS  Google Scholar 

  10. Kwak JH, Kim HJ, Lee KH, Kang SC, Zee OP (2009) Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina. Arch Pharm Res 32:207–213

    Article  PubMed  CAS  Google Scholar 

  11. Sticher O, Afifi-Yazar FU (1979) Minecoside and verminoside, two new iridoid glucosides from Veronica officinalis L. (Scrophulariaceae). Helv Chim Acta 62:535–539

    Article  CAS  Google Scholar 

  12. Hosny M, Rosazza J (1998) Gmelinosides A-L, twelve acylated iridoid glycosides from Gmelina arborea. J Nat Prod 61:734–742

    Article  PubMed  CAS  Google Scholar 

  13. Chu HB, Tan NH (2006) Iridoid glycoside from Pedicularis dolichocymba Hand.-Mazz. J Integr Plant Biol 48:1250–1253

    Article  CAS  Google Scholar 

  14. Kobayashi H, Komatsu J (1983) Studies on the constituents of Cistanchis Herba. Yakugaku Zasshi 103:508–511

    PubMed  CAS  Google Scholar 

  15. Teng RW, Wang DZ, Wu YS, Lu Y, Zheng QT, Yang CR (2005) NMR assignments and single-crystal X-ray diffraction analysis of deoxyloganic acid. Magn Reson Chem 43:92–96

    Article  PubMed  CAS  Google Scholar 

  16. Miyase T, Kuroyanagi M, Noro T, Ueno A, Fukushima S (1985) Studies on sesquiterpenes from Macroclinidium trilobum Makino. II. Chem Pharm Bull 33:4445–4450

    CAS  Google Scholar 

  17. Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K (1992) Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 31:827–831

    PubMed  CAS  Google Scholar 

  18. Miyase T, Koizumi A, Ueno A, Noro T, Kuroyanagi M, Fukushima S, Akiyama Y, Takemoto T (1982) Studies on the acyl glycosides from Leucosceptrum japonicum (Miq.) Kitamura et Murata. Chem Pharm Bull 30:2732–2737

    CAS  Google Scholar 

  19. Sasaki H, Nishimura H, Chin M, Mitsuhashi H (1989) Hydroxycinnamic acid esters of phenethyl alcohol glycosides from Rehmannia glutinosa var. purpurea. Phytochemistry 28:875–879

    Article  CAS  Google Scholar 

  20. Afifi MS, Lahloub MF, El-Khayaat SA, Anklin CG (1993) Crenatoside: a novel phenylpropanoid glycoside from Orobanche crenata. Planta Med 59:359–362

    Article  PubMed  CAS  Google Scholar 

  21. Matsuda N, Sato H, Yaoita Y, Kikuchi M (1996) Isolation and absolute structures of the neolignan glycosides with the enantiomeric aglycones from the leaves of Viburnum awabuki K. Koch. Chem Pharm Bull 44:1122–1123

    CAS  Google Scholar 

  22. Yuan CS, Sun XB, Zhao PH, Cao MA (2007) Antibacterial constituents from Pedicularis armata. J Asian Nat Prod Res 9:673–677

    Article  PubMed  CAS  Google Scholar 

  23. Wang HB, Yao H, Bao GH, Zhang HP, Qin GW (2004) Flavone glucosides with immunomodulatory activity from the leaves of Pleioblastus amarus. Phytochemistry 65:969–974

    Article  PubMed  CAS  Google Scholar 

  24. Mabry TJ, Liu YL, Pearce J, Dellamonica G, Chopin J, Markham KR, Paton NH, Smoth P (1984) New flavonoids from sugarcane (Saccharum). J Nat Prod 47:127–130

    Article  CAS  Google Scholar 

  25. Harborne JB, Mabry TJ (1982) The flavonoids: advances in research. Chapman and Hall, New York, p 450

    Google Scholar 

  26. Kim JH, Lee BC, Kim JH, Sim GS, Lee DH, Lee KE, Yun YP, Pyo HB (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res 28:195–202

    Article  PubMed  CAS  Google Scholar 

  27. Skaltsounis AL, Tsitsa-Tzardis E, Demetzos C, Harvala C (1996) Unduloside, a new iridoid glycoside from Verbascum undulatum. J Nat Prod 59:673–675

    Article  CAS  Google Scholar 

  28. Bianco A, Guisso M, Iavarone C, Passacantilli P, Trogodo C (1981) Iridoid. XXIX. Sinuatol (6-O-α-L-rhamnopyranosylaucubin) from Verbascum sinuatum. Planta Med 41:75–79

    Article  PubMed  CAS  Google Scholar 

  29. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  30. Dirsch VM, Stuppner H, Vollmar AM (1998) The Griess assay: suitable for a bio-guided fractionation of anti-inflammatory plant extracts. Planta Med 64:423–426

    Article  PubMed  CAS  Google Scholar 

  31. Olken NM, Rusche KM, Richards MK, Marletta A (1991) Inactivation of macrophage nitric oxide synthase activity by N G-methyl-l-arginine. Biochem Biophys Res Commun 177:828–833

    Article  PubMed  CAS  Google Scholar 

  32. Olken NM, Marletta MA (1993) N-Methyl-l-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase. Biochemistry 32:9677–9685

    Article  PubMed  CAS  Google Scholar 

  33. Stahelin H (1973) Activity of a new glycosidic lignan derivative (VP 16-213) related to podophyllotoxin in experimental tumors. Eur J Cancer 9:215–221

    PubMed  CAS  Google Scholar 

  34. Nissen NI, Hansen HH, Pederson H, Stroyer I, Dombernowsky P, Hessllund M (1975) Clinical trial of the oral form of a new podophyllotoxin derivative, VP 16-213 (NSC-141540), in patients with advanced neoplastic disease. Cancer Chemother Rep 59:1027–1029

    PubMed  CAS  Google Scholar 

  35. Issell BF, Crooke ST (1979) Etoposide (VP 16-213). Cancer Treat Rev 6:107–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for access to the superconducting NMR instrument and the HR-ESI-MS at the Analytical Center of Molecular Medicine and the Analysis Center of Life Science, respectively, of the Graduate School of Biomedical Sciences, Hiroshima University. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports, Culture and Technology of Japan, and the Japan Society for the Promotion of Science (nos. 22590006 and 23590130). Thanks are also due to the Takeda Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Otsuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochi, M., Matsunami, K., Otsuka, H. et al. A new iridoid glycoside and NO production inhibitory activity of compounds isolated from Russelia equisetiformis . J Nat Med 66, 227–232 (2012). https://doi.org/10.1007/s11418-011-0569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0569-z

Keywords

Navigation