Skip to main content

Advertisement

Log in

New α-glucosides of caffeoyl quinic acid from the leaves of Moringa oleifera Lam.

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Two new caffeoyl quinic acid α-glucosides, together with three known caffeoyl quinic acids and five known flavonoid glucosides, were isolated from the leaves of Moringa oleifera Lam. The structures of the new compounds were elucidated as 4-O-(4′-O-α-d-glucopyranosyl)-caffeoyl quinic acid (1) and 4-O-(3′-O-α-d-glucopyranosyl)-caffeoyl quinic acid (2) by spectroscopic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sastri BN (1962) The wealth of India. Council of Scientific and Industrial Research, New Delhi

  2. Basu BD, Kirtikar KR (1980) Indian medicinal plants, vol. 1. International Book Distributors, Dehradun, pp 676–83

  3. Vaidyaratnam PSV (1994) Indian medicinal plants: a compendium of 500 species, vol. 4. Orient Longman, Madras, pp 59–64

    Google Scholar 

  4. Anwar F, Bhanger MI (2003) Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J Agric Food Chem 51:6558–6563

    Article  PubMed  CAS  Google Scholar 

  5. Anwar F, Ashraf M, Bhanger MI (2005) Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J Am Oil Chem Soc 82:45–51

    Article  CAS  Google Scholar 

  6. Eilert U, Wolters B, Nahrstedt A (1981) Moringa oleifera and Moringa stenopetala. Planta Med 42:55–61

    Article  PubMed  CAS  Google Scholar 

  7. Faizi S, Siddiqui BS, Saleem R, Siddiqui S, Aftab K, Gilani AH (1994) Novel hypotensive agents, niazimin A, niazimin B, niazicin A and niazicin B from Moringa oleifera: isolation of first naturally occurring carbamates. J Chem Soc Perkin Trans 1:3035–3040

    Article  Google Scholar 

  8. Faizi S, Siddiqui BS, Saleem R, Aftab K, Shaheen F, Gilani AH (1998) Hypotensive constituents from the pods of Moringa oleifera. Planta Med 64:225–228

    Article  PubMed  CAS  Google Scholar 

  9. Guevara AP, Vargas C, Sakurai H, Fujiwara Y, Hashimoto K, Maoka T, Kozuka M, Ito Y, Tokuda H, Nishino H (1999) An antitumor promoter from Moringa oleifera Lam. Mutat Res Fundam Mol Mech Mutagen 440:181–188

    CAS  Google Scholar 

  10. Murakami A, Kitazono Y, Jiwajinda S, Koshimizu K, Ohigashi H (1998) Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor promoter-induced Epstein-Barr virus activation. Planta Med 64:319–323

    Article  PubMed  CAS  Google Scholar 

  11. Cheenpracha S, Park EJ, Yoshida WY, Barit C, Wall M, Pezzuto JM, Chang LC (2010) Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem 18:6598–6602

    Article  PubMed  CAS  Google Scholar 

  12. Morishita H, Iwahashi H, Osaka N, Kido R (1984) Chromatographic separation and identification of naturally occurring chlorogenic acids by 1H nuclear magnetic resonance spectroscopy and mass spectrometry. J Chromatogr A 315:253–260

    Article  CAS  Google Scholar 

  13. Jaramillo K, Dawid C, Hofmann T, Fujimoto Y, Osorio C (2011) Identification of antioxidative flavonols and anthocyanins in Sicana odorifera fruit peel. J Agric Food Chem 59:975–983

    Article  PubMed  CAS  Google Scholar 

  14. Burkard W, Victor W, Rudolf G, Karl H (1989) Malonated flavonol glycosides and 3,5-dicaffeoylquinic acid from pears. Phytochemistry 28:663–664

    Article  Google Scholar 

  15. Liu X, Ye W, Yu B, Zhao S, Wu H, Che C (2004) Two new flavonol glycosides from Gymnema sylvestre and Euphorbia ebracteolata. Carbohydr Res 339:891–895

    Article  PubMed  CAS  Google Scholar 

  16. Wagner GK, Pesnot T (2010) Glycosyltransferases and their assays. ChemBioChem 11:1939–1949

    Article  PubMed  CAS  Google Scholar 

  17. Christiane Goedl C, Nidetzky B (2009) Sucrose phosphorylase harbouring a redesigned, glycosyltransferase-like active site exhibits retaining glucosyl transfer in the absence of a covalent intermediate. ChemBioChem 10:2333–2337

    Article  PubMed  Google Scholar 

  18. Hu Y, Walker S (2002) Remarkable structural similarities between diverse glycosyltransferases. Chem Biol 9: 1287–1296

    Google Scholar 

  19. Streb S, Egli B, Eicke S, Zeeman CC (2009) The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway. Plant Physiol 151:1769–1772

    Article  PubMed  CAS  Google Scholar 

  20. Ullah N, Ahmed S, Muhammad P, Ahmed Z, Nawaz HR, Malik A (1999) Coumarinolignoid glycoside from Daphne oleoides. Phytochemistry 51:103–105

    Article  CAS  Google Scholar 

  21. Shi SY, Zhou Q, Peng H, Zhou CX, Hu MH, Tao QF, Hao XJ, Stöckigt J, Zhao Y (2007) Four new constituents from Taraxacum mongolicum. Chin Chem Lett 18:1367–1370

    CAS  Google Scholar 

  22. Cuong NX, Nhiem NX, Thao NP, Nama NH, Dat NT, Anh HLT, Huong LM, Kiem PV, Minh CV, Wonc JH, Chung WY, Kim YH (2010) Inhibitors of osteoclastogenesis from Lawsonia inermis leaves. Bioorg Med Chem Lett 20:4782–4784

    Article  PubMed  Google Scholar 

  23. She G, Guo Z, Lv H, She D (2009) New flavonoid glycosides from Elsholtzia rugulosa Hemsl. Molecules 14:4190–4196

    Article  PubMed  CAS  Google Scholar 

  24. Myers RW, Lee RT, Lee YC, Thomas GH, Reynolds LW, Uchida Y (1980) The synthesis of 4-methylumbelliferyl α-ketoside of N-acetylneuraminic acid and its use in a fluorometric assay for neuraminidase. Anal Biochem 101:166–174

    Article  PubMed  CAS  Google Scholar 

  25. Reed L, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hygiene 27:493–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Kashiwada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwada, Y., Ahmed, F.A., Kurimoto, Si. et al. New α-glucosides of caffeoyl quinic acid from the leaves of Moringa oleifera Lam.. J Nat Med 66, 217–221 (2012). https://doi.org/10.1007/s11418-011-0563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0563-5

Keywords

Navigation