Skip to main content
Log in

Aqueous-methanolic extract of sweet flag (Acorus calamus) possesses cardiac depressant and endothelial-derived hyperpolarizing factor-mediated coronary vasodilator effects

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

This investigation was aimed to probe the pharmacological base of medicinal use of Acorus calamus in ischemic heart diseases. Effect on heart parameters was studied in isolated rabbit heart while coronary vasodilator effect was studied in isolated bovine coronary arterial rings, suspended in tissue baths filled with Krebs solution, maintained at 37°C, aerated with carbogen and responses were measured on PowerLab data acquisition system. In Langendorrf’s perfused rabbit heart, the crude extract of Acorus calamus (Ac.Cr) at 0.01–10 mg/mL partially suppressed force of ventricular contractions (FVC), heart rate (HR) and coronary flow (CF). The ethylacetate fraction completely suppressed FVC, partially suppressed HR and CF, while the nHexane fraction exhibited similar effect on FVC and HR but increased CF, similar to methacholine and arachidonic acid. In bovine coronary arterial preparations, Ac.Cr caused inhibition of U46619 (20 nM)-precontractions, which was blocked in presence of increasing concentration of K+ (4.8–20 mM), tetraethylammonium (1 μM) and SKF525A (10 μM), similar to arachidonic acid and methacholine, indicating K+ channels activation and possible involvement of endothelial-derived hyperpolarizing factor (EDHF). Activity-directed fractionation revealed that EDHF-mediated activity is concentrated in the nHexane fraction. When tested against high K+, the ethylacetate fraction was found more potent than parent crude extract and nHexane fraction. These data indicate that Ac.Cr mediates coronary vasodilator effect primarily through EDHF, responsible for the increase in CF, while the cardiac depressant effects may be due to the presence of additional cardiac depressant constituent(s), thus provides possible mechanistic basis to its medicinal use in ischemic heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wiart C (2002) Medicinal plants of South East Asia. Prentice Hall, Selangor

    Google Scholar 

  2. Wallis TE (1985) Text book of pharmacognosy. CBS Publishers & Distributors, New Delhi

    Google Scholar 

  3. Duke JA, Bogenschutz-Godwin MJ, Du celliar J, Duke PK (2002) Hand book of medicinal herbs, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Baquar SR (1989) Medicinal and poisonous plants of Pakistan. Printas, Karachi

    Google Scholar 

  5. Kapoor LD (2000) Handbook of Ayurvedic medicinal plants. CRC Press, Boca Raton

    Google Scholar 

  6. Danilevskii NF, Antonishin BV (1982) Antimicrobial activity of a tincture of Japanese pagoda tree (Sophora japonica) and of the essential oil of sweet flag (Acorus calamus). Mikrobiol Zh 44:80–82

    PubMed  CAS  Google Scholar 

  7. Shoba FG, Thomas M (2001) Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. J Ethnopharmacol 76:73–76

    Article  PubMed  CAS  Google Scholar 

  8. Parab RS, Mengi SA (2002) Hypolipidemic activity of Acorus calamus L. in rats. Fitoterapia 73:451–455

    Article  PubMed  Google Scholar 

  9. Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC (2002) Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res 16:256–260

    Article  PubMed  Google Scholar 

  10. Acuna UM, Atha DE, Ma J, Nee MH, Kennelly EJ (2002) Antioxidant capacities of ten edible North American plants. Phytother Res 16:63–65

    Article  PubMed  Google Scholar 

  11. Oh MH, Houghton PJ, Whang WK, Cho JH (2004) Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 11:544–548

    Article  PubMed  CAS  Google Scholar 

  12. Jain N, Jain R, Jain A, Jain DK, Chandel HS (2010) Evaluation of wound-healing activity of Acorus calamus Linn. Nat Prod Res 24:534–541

    Article  PubMed  CAS  Google Scholar 

  13. Gilani AH, Shah AJ, Manzoor A, Farzana S (2006) Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytother Res 20:1080–1084

    Article  PubMed  Google Scholar 

  14. Shah AJ, Gilani AH (2009) Blood pressure lowering and vascular modulator effects of Acorus calamus extract are mediated through multiple pathways. J Cardiovasc Pharmacol 54:38–46

    Article  PubMed  CAS  Google Scholar 

  15. Williamson EM, Okpako DT, Evans FJ (1998) Pharmacological methods in phytotherapy research. Wiley, Chichester

    Google Scholar 

  16. Venkatesh S, Madhava RB, Dayanand RG, Mullangi R, Lakshman M (2010) Antihyperglycemic and hypolipidemic effects of Helicteres isora roots in alloxan-induced diabetic rats: a possible mechanism of action. J Nat Med 64:295–304

    Article  PubMed  Google Scholar 

  17. Wang Y, Han T, Zhu Y, Zheng CJ, Ming QL, Rahman K, Qin LP (2010) Antidepressant properties of bioactive fractions from the extract of Crocus sativus L. J Nat Med 64:24–30

    Article  PubMed  CAS  Google Scholar 

  18. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington

    Google Scholar 

  19. Balderston SM, Johnson KE, Reiter MJ (1991) Electrophysiologic evaluation of cardiovascular agents in the isolated intact rabbit heart. J Pharmacol Methods 25:205–213

    Article  PubMed  CAS  Google Scholar 

  20. Taqvi SIH, Ghayur MN, Gialni AH, Saify ZS, Aftab MT (2006) Synthesis and smooth muscle-selective relaxant activity of a piperidine analogue: 1-(4′-fluorophenacyl)-4-hydroxy-4-phenylpiperidinium chloride. Arch Pharm Res 29:34–39

    Article  PubMed  CAS  Google Scholar 

  21. Stephen F, Malcolm JL (1993) A factor released from coronary vascular endothelium inhibits myocardial contractile performance. Am J Physiol Heart Circ Physiol 264:H830–H836

    Google Scholar 

  22. Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423

    PubMed  CAS  Google Scholar 

  23. Farre AJ, Columbo M, Fort M, Gutierrez B (1991) Differential effects of various Ca2+ antagonists. Gen Pharmacol 22:177–181

    Article  PubMed  CAS  Google Scholar 

  24. Fantel AG, Nekahi N, Shepard TH, Cornel LM, Unis AS, Lemire RG (1997) The teratogenicity of N G-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor in rats. Reprod Toxicol 11:709–717

    Article  PubMed  CAS  Google Scholar 

  25. Moncada S, Korbut R, Bunting S, Vane JR (1978) Prostacyclin is a circulating hormone. Nature 273:767–768

    Article  PubMed  CAS  Google Scholar 

  26. Fleckenstein A (1977) Specific pharmacology of Ca2+ in myocardium, cardiac pacemakers and vascular smooth muscle. Rev Pharmacol Toxicol 17:149–166

    Article  CAS  Google Scholar 

  27. Bolton TB (1979) Mechanism of action of transmitters and other substances on smooth muscles. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  28. Rang HP, Dale MM, Ritter JM (1995) Pharmacology. Churchill Livingstone, London

    Google Scholar 

  29. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  30. Bova S, Cargnelli G, D’Amato E, Forti S, Yang Q, Trevisi L, Debetto P, Cima L, Luciani S, Padrini R (1997) Calcium-antagonist effects of norbormide on isolated perfused heart and cardiac myocytes of guinea-pig: a comparison with verapamil. Br J Pharmacol 120:19–24

    Article  PubMed  CAS  Google Scholar 

  31. Feletou M, Vanhoutte PM (1988) Endothelium-dependent hyper-polarization of canine coronary smooth muscle. Br J Pharmacol 93:515–524

    PubMed  CAS  Google Scholar 

  32. Qian YZ, Levasseur JE, Toshida KI, Kukreja RC (1996) KATP channels in rat heart: blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Am J Physiol 271:H23–H28

    PubMed  CAS  Google Scholar 

  33. Huang JS, Ramamurthy SK, Lin X, Le BGC (2004) Cell signaling through thromboxane A2 receptors. Cell Signal 16:521–533

    Article  PubMed  CAS  Google Scholar 

  34. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K1 is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272

    Article  PubMed  CAS  Google Scholar 

  35. Ross GR, Yallampalli C (2006) Endothelium-independent relaxation by adrenomedullin in pregnant rat mesenteric artery: role of cAMP-dependent protein kinase A and calcium-activated potassium channels. JPET 317:1269–1275

    Article  CAS  Google Scholar 

  36. Dora KA, Garland CJ (2001) Properties of smooth muscle hyperpolarization and relaxation to potassium in the rat isolated mesenteric artery. Am J Physiol Heart Circ Physiol 280:H2424–H2429

    PubMed  CAS  Google Scholar 

  37. Silvia N, Wiliam SW, Hilary L, Andrea L, Susan M, Andrew GP, Wiliam M (2003) Evaluation of potassium ion as the endothelium-derived hyperpolarizing factor (EDHF) in the bovine coronary artery. Br J Pharmacol 139:982–988

    Article  Google Scholar 

  38. Rosolowsky M, Campbell WB (1993) Role of PGI2 and EETs in the relaxation of bovine coronary arteries to arachidonic acid. Am J Physiol 264:H327–H335

    PubMed  CAS  Google Scholar 

  39. Gebremedhin D, Harder DR, Pratt PF, Campbell WB (1998) Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: role of a cytochrome P450 metabolite. J Vasc Res 35:274–284

    Article  PubMed  CAS  Google Scholar 

  40. Fujii K, Tominaga M, Ohmori S, Kobayashi K, Koga T, Takata Y, Fumjishima M (1992) Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res 70:660–669

    PubMed  CAS  Google Scholar 

  41. Trautwein W (1973) Membrane currents in cardiac muscle fibres. Physiol Rev 53:793–835

    Google Scholar 

  42. Holzmann S, Kukovetz WR, Windischhofer W, Paschke E, Graier WF (1994) Pharmacologic differentiation between endothelium-dependent relaxations sensitive and resistant to nitro-l-arginine in coronary arteries. J Cardiovasc Pharmacol 23:747–756

    Article  PubMed  CAS  Google Scholar 

  43. Cohen RA, Vanhoutte PM (1995) Endothelium-dependent hyperpolarization-beyond nitric oxide and cyclic GMP. Circulation 92:3337–3349

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with partial support from the Pakistan Science Foundation. The authors are thankful to Mr. Stephen Hudson, Department of Biochemistry, Medical College of Wisconsin, USA, for the grammatical and typographical corrections in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwarul Hassan Gilani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A.J., Gilani, A.H. Aqueous-methanolic extract of sweet flag (Acorus calamus) possesses cardiac depressant and endothelial-derived hyperpolarizing factor-mediated coronary vasodilator effects. J Nat Med 66, 119–126 (2012). https://doi.org/10.1007/s11418-011-0561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0561-7

Keywords

Navigation