Skip to main content

Advertisement

Log in

Protective effect of Pueraria tuberosa DC. embedded biscuit on cisplatin-induced nephrotoxicity in mice

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Recently, the nephroprotective property of Pueraria tuberosa DC. tuber (PT) has been reported by our group. Here, PT-embedded biscuits were prepared and tested on cisplatin-induced nephrotoxicity in Swiss albino mice. The PT powder was characterized by RAPD (random amplified polymorphic DNA) to ascertain its authenticity and PT biscuits were prepared in different concentrations (1, 2, or 4 g of PT powder). These biscuits were given as diet for a total of 10 days, but on the 7th day cisplatin injection (8 mg/kg bw, i.p.) was given. On the 10th day animals were killed to collect kidneys for assessment of antioxidant status. Blood samples were collected on both the 7th and 10th days for assessment of liver and kidney functions. In mice, PT biscuit showed significant protection against cisplatin-induced nephrotoxicity, but there was a transient rise in alanine aminotransferase and aspartate aminotransferase at the dose of 4 g PT biscuit. Therefore, it is suggested that PT biscuit might be an effective food supplement for cancer patients undergoing cisplatin-chemotherapy. However, periodical liver function monitoring is required, especially when PT is used for longer periods or at higher doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M (2006) Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci 100:65–72

    Article  PubMed  CAS  Google Scholar 

  2. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  PubMed  CAS  Google Scholar 

  3. Sugiyama S, Hayakawa M, Kato T, Hanaki Y, Shimizu K, Ozawa T (1989) Adverse effects of anti-tumor drug, cisplatin, on rat kidney mitochondria: disturbances in glutathione peroxidase activity. Biochem Biophys Res Commun 159:1121–1127

    Article  PubMed  CAS  Google Scholar 

  4. Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131:518–526

    Article  PubMed  CAS  Google Scholar 

  5. Chirino YI, Trujillo J, Sanchez-Gonzalez DJ, Martinez-Martinez CM, Cruz C, Bobadilla NA, Pedraza-Chaverri J (2008) Selective iNOS inhibition reduces renal damage induced by cisplatin. Toxicol Lett 176:48–57

    Article  PubMed  CAS  Google Scholar 

  6. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15

    Article  PubMed  CAS  Google Scholar 

  7. Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  PubMed  CAS  Google Scholar 

  8. Nagwani S, Tripathi YB (2010) Amelioration of cisplatin induced nephrotoxicity by PTY: a herbal preparation. Food Chem Toxicol 48:2253–2258

    Article  PubMed  CAS  Google Scholar 

  9. Tripathi YB, Tripathi P, Arjmandi BH (2005) Nutraceuticals and cancer management. Frontiers Biosci 10:1607–1618

    Article  CAS  Google Scholar 

  10. Pandey GS, Chunekar KC (1998) Vidari Kand, Nighantu BP (eds) Chaukambha Vidya Bhavan, Varanasi, vol 1:388–389

  11. Tanwar YS, Goyal S, Ramawat KG (2008) Hypolipidemic effects of tubers of Indian Kudzu (Pueraria tuberosa). J Herbal Med Toxicol 2(1):21–25

    CAS  Google Scholar 

  12. Gupta RS, Sharma R, Sharma A (2004) Antifertility effects of Pueraria tuberosa root extract in male rats. Pharm Biol 42(8):603–609

    Article  Google Scholar 

  13. Hsu LF, Liu MI, Kuo HD, Chen CW, Su CH, Cheng TJ (2003) Antihyperglycemic effect of Puerarin in streptozotocin-induced rats. J Nat Prod 66:788–792

    Article  PubMed  CAS  Google Scholar 

  14. Shukla S, Jonathan S, Sharma A (1996) Protective action of butanolic extract of Pueraria tuberosa DC against carbon tetrachloride induced hepatotoxicity in adult rats. Phytother Res 10(7):608–609

    Article  Google Scholar 

  15. Pandey N, Chaurasia JK, Tiwari OP, Tripathi YB (2007) Antioxidant properties of different fractions of tubers from Pueraria tuberosa. Food Chem 105:219–222

    Article  CAS  Google Scholar 

  16. Pandey N, Tripathi YB (2010) Antioxidant activity of tuberosin isolated from Pueraria tuberosa Linn. J Inflamm 7:47

    Article  Google Scholar 

  17. Nagwani S, Kumar M, Singh R, Tripathi YB (2010) Hepatotoxicity of tubers of Indian Kudzu (Pueraria tuberosa) in rats. Food Chem Toxicol 48:1066–1071

    Article  Google Scholar 

  18. Khanuja PSS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Bio Rep 17:1–7

    Article  Google Scholar 

  19. Devaiah KM, Venkatasubramanian P (2008) Development of SCAR marker for authentication of Pueraria tuberose (Roxb. ex. Willd.) DC. Curr Sci 94(10):1306–1309

    CAS  Google Scholar 

  20. Waynforth PLHB (1980) Experimental and surgical technique in the rat. Academic Press, London

    Google Scholar 

  21. Schumann G, Bonora R, Ceriotti F, Férard G, Ferrero CA, Franck PFH, Gella FJ, Hoelzel W, Jørgensen PJ, Kanno T, Kessner A, Klauke R, Kristiansen N, Lessinger JM, Linsinger TPJ, Misaki H, Panteghini M, Pauwels J, Schiele F, Schimmel HG (2002) 725 IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C, part 5. Clin Chem Lab Med 40:725–733

    Article  PubMed  CAS  Google Scholar 

  22. Garber CC (1981) Jendrassik–Grof analysis for total and direct bilirubin in serum with a centrifugal analyzer. Clin Chem 27:1410–1416

    PubMed  CAS  Google Scholar 

  23. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  PubMed  CAS  Google Scholar 

  24. Larsen K (1972) Creatinine assay by a reaction-kinetic principle. Clin Chim Acta 41:209–217

    Article  PubMed  CAS  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  26. Tripathi YB, Sharma M (1998) Comparison of antioxidant action of alcoholic extract of Rubia cordifolia with rubiadin. Indian J Biochem Biophys 35:313–316

    PubMed  CAS  Google Scholar 

  27. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  28. Tripathi YB, Singh VP (1996) Role of Tamra bhasma, an Ayurvedic preparation, in the management of lipid peroxidation in liver of albino rats. Indian J Exp Biol 34:66–70

    PubMed  CAS  Google Scholar 

  29. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46(2):639–653

    Article  PubMed  CAS  Google Scholar 

  30. Tripathi YB, Shukla S, Sharma M, Shukla VK (1995) Antioxidant property of Rubia cordifolia extract and its comparison with Vitamin E and Parabenzoquinone. Phytother Res 9:440–443

    Article  Google Scholar 

  31. Lowry OH, Rosebrough AL, Earr KJ, Randall KJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  32. Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480

    Article  PubMed  CAS  Google Scholar 

  33. Somani S, Husain K, Whitworth C, Trammell G, Malafa M, Rybak L (2000) Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 86(5):234–241

    Article  PubMed  CAS  Google Scholar 

  34. Somani SM, Ravi R, Rybak LP (1995) Diethyldithiocarbamate protection against cisplatin nephrotoxicity: antioxidant system. Drug Chem Toxicol 18(2–3):151–170

    Article  PubMed  CAS  Google Scholar 

  35. Badary OA, Nagi MN, Al-Shabanah OA, Al-Sawaf HA, Al-Sohaibani MO, Al-Bekairi AM (1997) Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75(12):1356–1361

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida M, Khokhar A, Kido Y, Ali-Osman F, Siddik Z (1994) Correlation of total and interstrand DNA adducts in tumor and kidney with antitumor efficacies and differential nephrotoxicities of cis-ammine/cyclohexylamine-dichloroplatinum (II) and cisplatin. Biochem Pharmacol 17:793–799

    Article  Google Scholar 

  37. Appenroth D, Frob S, Kersten L, Splinter FK, Winnefeld K (1997) Protective effects of vitamin E and C on cisplatin nephrotoxicity in developing rats. Arch Toxicol 71:677–683

    Article  PubMed  CAS  Google Scholar 

  38. Braunlich H, Appenroth D, Fleck C (1997) Protective effects of methimazole against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 17:41–45

    Article  PubMed  CAS  Google Scholar 

  39. Davis CA, Nick HS, Agarwal A (2001) Manganese superoxide dismutase attenuates cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol 12:2683–2690

    PubMed  CAS  Google Scholar 

  40. Husain K, Morris C, Whitworth C, Trammell GL, Rybak LP, Somani SM (1998) Protection by ebselen against cisplatin-induced nephrotoxicity: antioxidant system. Mol Cell Biochem 178:127–133

    Article  PubMed  CAS  Google Scholar 

  41. Liu H, Baliga R (2000) Effect of iron chelator, hydroxyl radical scavenger and cytochrome P450 inhibitors on the cytotoxicity of cisplatin to tumor cells. Anticancer Res 20:4547–4550

    PubMed  CAS  Google Scholar 

  42. Mishima K, Hidaka S, Takamura N, Shinozawa S (1999) Protection against cis-diamminedichloroplatinum-induced nephrotoxicity by 2,3-dimercaptosuccinic acid in rats. Ren Fail 21:593–602

    Article  PubMed  CAS  Google Scholar 

  43. Nishikawa M, Nagatomi H, Nishijima M, Ohira G, Chang BJ, Sato E, Inoue M (2001) Targeting superoxide dismutase to renal proximal tubule cells inhibits nephrotoxicity of cisplatin and increases the survival of cancer-bearing mice. Cancer Lett 171:133–138

    Article  PubMed  CAS  Google Scholar 

  44. Yuhas JM, Culo F (1980) Selective inhibition of the nephrotoxicity of cis-dichlorodiammineplatinum (II) by WR-2721 without altering its antitumor properties. Cancer Treat Rep 64:57–64

    PubMed  CAS  Google Scholar 

  45. Sadzuka Y, Shoji T, Takino Y (1992) Effect of cisplatin on the activities of enzymes which protect against lipid peroxidation. Biochem Pharmacol 43:1873–1875

    Article  Google Scholar 

  46. Halliwell B, Gutteridge JM (1989) Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell B, Gutteridge JM (eds), Free radicals in biology and medicine, 2nd ed. Oxford: Clarendon. p 87–187

  47. Sherlock S (1997) Assessment of liver function disease of liver and biliary system, 10th ed. Blackwell Science Ltd., London. p 17–32

  48. Iseri S, Ercan F, Gedik N, Yuksel M, Alican I (2007) Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicol 230:256–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research and the Board of Research in Nuclear Sciences for financial assistance to conduct this study. The authors would also like to express their thanks to Bananas Hindu University for providing a scholarship for the associated student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamini B. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, Y.B., Nagwani, S., Mishra, P. et al. Protective effect of Pueraria tuberosa DC. embedded biscuit on cisplatin-induced nephrotoxicity in mice. J Nat Med 66, 109–118 (2012). https://doi.org/10.1007/s11418-011-0559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0559-1

Keywords

Navigation