Skip to main content
Log in

Phellinus baumii ethyl acetate extract inhibits lipopolysaccharide-induced iNOS, COX-2, and proinflammatory cytokine expression in RAW264.7 cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Mushrooms are valuable sources of biologically active compounds possessing anticancer, antiplatelet, and anti-inflammatory properties. Phellinus baumii is a mushroom used in folk medicine for a variety of human diseases. However, its potential anti-inflammatory effect has remained unclear. Therefore, we studied the effect of P. baumii ethyl acetate extract (PBEAE) on inflammatory mediator and proinflammatory cytokine protein and/or mRNA expression levels using the nitric oxide (NO) assay, enzyme immunoassay (EIA), western blot, and reverse transcription polymerase chain reaction (RT–PCR) in lipopolysaccharide (LPS)-stimulated macrophage like RAW264.7 cells. PBEAE markedly inhibited NO generation and prostaglandin E2 (PGE2) synthesis in a concentration-dependent pattern without any cytotoxic effect at the concentration range used. PBEAE also suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. In addition, LPS-induced iNOS and COX-2 mRNA expression levels were dose-dependently inhibited by PBEAE pretreatment. Furthermore, PBEAE attenuated the mRNA expression levels of proinflammatory cytokines, specifically interleukin (IL)-1β, IL-6, and granulocyte macrophage colony-stimulating factor (GM-CSF), in a concentration-dependent fashion. Our study suggests that P. baumii might exhibit anti-inflammatory properties by downregulating proinflammatory mediators. Thus, further study on compounds isolated from PBEAE is warranted to investigate the associated molecular mechanisms and identify the potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100:171–194

    Article  PubMed  CAS  Google Scholar 

  2. Kuroda E, Yamashita U (2003) Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J Immunol 170:757–764

    PubMed  CAS  Google Scholar 

  3. Laskin DL, Sunil VR, Gardner CR, Laskin JD (2011) Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 51:267–288

    Article  PubMed  CAS  Google Scholar 

  4. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed  CAS  Google Scholar 

  5. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  PubMed  CAS  Google Scholar 

  6. Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    Article  PubMed  CAS  Google Scholar 

  7. Marcinkiewicz J, Grabowska A, Chain B (1995) Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur J Immunol 25:947–951

    Article  PubMed  CAS  Google Scholar 

  8. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    Article  PubMed  CAS  Google Scholar 

  9. Marnett LJ (2009) The COXIB experience: a look in the rearview mirror. Annu Rev Pharmacol Toxicol 49:265–290

    Article  PubMed  CAS  Google Scholar 

  10. Turini ME, DuBois RN (2002) Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53:35–57

    Article  PubMed  CAS  Google Scholar 

  11. Cha YI, DuBois RN (2007) NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med 58:239–252

    Article  PubMed  CAS  Google Scholar 

  12. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    Article  PubMed  CAS  Google Scholar 

  13. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  14. Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW, Lopez AF (2009) The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114:1289–1298

    Article  PubMed  CAS  Google Scholar 

  15. Germano G, Allavena P, Mantovani A (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43:374–379

    Article  PubMed  CAS  Google Scholar 

  16. Ahmed S, Anuntiyo J, Malemud CJ, Haqqi TM (2005) Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complement Alternat Med 2:301–308

    Article  PubMed  Google Scholar 

  17. Cheung PCK (2010) The nutritional and health benefits of mushrooms. Nutr Bull 35:292–299

    Article  Google Scholar 

  18. Singh RS, Bhari R, Kaur HP (2010) Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 30:99–126

    Article  PubMed  CAS  Google Scholar 

  19. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  PubMed  CAS  Google Scholar 

  20. Ge Q, Zhang A-Q, Sun P-L (2010) Isolation, purification and structural characterization of a novel water soluble glucan from the fruiting bodies of Phellinus baumii pilat. J Food Biochem 34:1205–1215

    Article  CAS  Google Scholar 

  21. Shon M-Y, Kim T-H, Sung N-J (2003) Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem 82:593–597

    Article  CAS  Google Scholar 

  22. Noh J-R, Lee I-K, Ly S-Y, Yang K-J, Gang G-T, Kim Y-H, Hwang J-H, Yun B-S, Lee C-H (2011) A Phellinus baumii extract reduces obesity in high-fat diet-fed mice and absorption of triglyceride in lipid-loaded mice. J Med Food 14:209–218

    Article  PubMed  CAS  Google Scholar 

  23. Jang BS, Kim JC, Bae JS, Rhee MH, Jang KH, Song JC, Kwon OD, Park SC (2004) Extracts of Phellinus gilvus and Phellinus baumii inhibit pulmonary inflammation induced by lipopolysaccharide in rats. Biotechnol Lett 26:31–33

    Article  PubMed  CAS  Google Scholar 

  24. Chang Z, Oh B, Rhee M, Kim J, Lee S, Park S (2007) Polysaccharides isolated from Phellinus baumii stimulate murine splenocyte proliferation and inhibit the lipopolysaccharide-induced nitric oxide production in RAW264.7 murine macrophages. World J Microbiol Biotechnol 23:723–727

    Article  CAS  Google Scholar 

  25. Kamruzzaman SM, Endale M, Oh WJ, Park SC, Kim TH, Lee IK, Cho JY, Park HJ, Kim SK, Yun BS, Rhee MH (2011) Antiplatelet activity of Phellinus baummii methanol extract is mediated by cyclic AMP elevation and inhibition of collagen-activated integrin-alpha(IIb) beta(3) and MAP kinase. Phytother Res. doi:10.1002/ptr.3450

  26. Jose N, Ajith TA, Janardhanan KK (2004) Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation. Phytother Res 18:43–46

    Article  PubMed  Google Scholar 

  27. Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24:1839–1845

    Article  CAS  Google Scholar 

  28. Lee IK, Yun BS (2011) Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. J Antibiot 64:349–359. doi:10.1038/ja.2011.2

    Google Scholar 

  29. Chun KS, Surh YJ (2004) Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 68:1089–1100

    Article  PubMed  CAS  Google Scholar 

  30. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  31. Milella M, Metro G, Gelibter A, Pino SM, Cognetti F, Fabi A (2008) COX-2 targeting in cancer: a new beginning? Ann Oncol 19:1209–1210

    Article  PubMed  CAS  Google Scholar 

  32. Mukherjee D, Nissen SE, Topol EJ (2001) Risk of cardiovascular events associated with selective COX-2 inhibitors. Jama 286:954–959

    Article  PubMed  CAS  Google Scholar 

  33. TG FrancoL (2009) Cross-talk between inducible nitric oxide synthase and cyclooxygenase in Helicobacter-pylori-induced gastritis. Med Princ Pract 18:477–481

    Article  Google Scholar 

  34. Uno K, Iuchi Y, Fujii J, Sugata H, Iijima K, Kato K, Shimosegawa T, Yoshimura T (2004) In vivo study on cross talk between inducible nitric-oxide synthase and cyclooxygenase in rat gastric mucosa: effect of cyclooxygenase activity on nitric oxide production. J Pharmacol Exp Ther 309:995–1002

    Article  PubMed  CAS  Google Scholar 

  35. Perez-Sala D, Lamas S (2001) Regulation of cyclooxygenase-2 expression by nitric oxide in cells. Antioxid Redox Signal 3:231–248

    Article  PubMed  CAS  Google Scholar 

  36. Charles A, Dinarello MD (2009) Interleukin-1β and the autoinflammatory diseases. N Engl J Med 360:2467–2470

    Article  Google Scholar 

  37. Fonseca JE, Santos MJ, Canhao H, Choy E (2009) Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev 8:538–542

    Article  PubMed  CAS  Google Scholar 

  38. Kim SJ, Choi Y, Choi YH, Park T (2011) Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J Nutr Biochem. doi:10.1016/j.jnutbio.2010.10.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bong-Sik Yun or Man Hee Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yayeh, T., Oh, W.J., Park, SC. et al. Phellinus baumii ethyl acetate extract inhibits lipopolysaccharide-induced iNOS, COX-2, and proinflammatory cytokine expression in RAW264.7 cells. J Nat Med 66, 49–54 (2012). https://doi.org/10.1007/s11418-011-0552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0552-8

Keywords

Navigation